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Abstract. We study some Riemannian metrics on the space of smooth regular curves in the plane,

viewed as the orbit space of maps frsthto the plane modulo the group of diffeomorphismsséf
acting as reparametrizations. In particular we investigate the metric, for a coAstaf

G?(h, k) = /51(1+ Akc(0)2)(h(0), k(©))|c'(0)| db

wherex, is the curvature of the curveandh, k are normal vector fields to. The termA«?2 is

a sort of geometric Tikhonov regularization because,foe 0, the geodesic distance between

any two distinct curves is 0, while fot > 0 the distance is always positive. We give some lower
bounds for the distance function, derive the geodesic equation and the sectional curvature, solve the
geodesic equation with simple endpoints numerically, and pose some open questions. The space
has an interesting split personality: among large smooth curves, all its sectional curvatured are
while for curves with high curvature or perturbations of high frequency, the curvatures@re

1. Introduction

This paper arose from the attempt to find the simplest Riemannian metric on the space
of 2-dimensional ‘shapes’. By a shape we mean a compact simply connected region in
the plane whose boundary is a simple closed curve. By requiring that the boundary curve
has various degrees of smoothness, we get not just one space but a whole hierarchy of
spaces. All these spaces will include, however, a core, namely the space of all shapes
with C* boundary curves. We expect that the most natural shape spaces will arise as the
completions of this core space in some metric, hence we take this core as our basic space.
Note that it is the orbit space

B.(S%, R?) = Emb(St, R?)/ Diff ($1)
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of the space of alC™ embeddings of? in the plane, under the action by composition
from the right by diffeomorphisms of the circle. The space ESAbR?) is a smooth
manifold, in fact an open subset of theeEhet spac€ (51, R?), and it is the total space
of a smooth principal bundle with bage (s1, R?).
In fact, most of our results carry over to the bigger orbit space of immersions mod
diffeomorphisms:
B; (S, R?) = Imm(St, R?)/Diff (S1).

This action is not quite free (see 2.4 and 2.5), hence this orbit space is an orbifold (see 2.5)
and not quite a manifold. There is the slightly smaller space ir(see 2.1) of immersed
curves where diffeomorphisms act freely, the total space of a principal fiber bundle with a
natural connection admitting parallel transport. Existence of horizontal curves, however,
holds also in the big space Imm (see 2.5) which will be one of the weapons in our hunt
for geodesics omB;.

The second author was led to study the spacom its relevance to computer vision.

To understand an image of the world, one needs to identify the most salient objects present
in this image. In addition to readily quantifiable properties like color and area, objects
in the world and their projections depicted by 2D images possess a ‘shape’ which is
readily used by human observers to distinguish, for example, cats from dogs, BMW'’s
from Hondas, etc. In fact people are not puzzled by what it means to say two shapes
are similar but rather find this a natural question. This suggests that we construct, on
some crude level, a mental metric which can be used to recognize familiar objects by the
similarity of their shapes and to cluster categories of related objects like cats. Incidentally,
immersions also arise in vision when a 3D object partially occludes itself from some
viewpoint, hence its full 2D contour has visible and invisible parts which, together, form
an immersed curve in the image plane.

It is a central problem in computer vision to devise algorithms by which computers
can similarly recognize and cluster shapes. Many types of metrics have been proposed for
this purpose [7]. For example, there dretype metrics such as the area of the symmetric
difference of the interiors of two shapes. And there APé-type metrics such as the
Hausdorff metric: the maximum distance of points on either shape from the points on
the other or of points outside one shape from points outside the other. These metrics will
come up below, but the starting point of this investigation was whether one could use the
manifold structure on the space of shapes and defingagpe metric by introducing a
Riemannian structure on the space.

Such questions have also arisen in TeitHer theory and string theory, where the
so-called Weil-Peterssen metric on the space of shapes (also called the ‘universal Teich-
muller space’) has been much studied. In a second part of this paper, we will compare our
metric to this remarkable (homogeneous!) metric.

In this paper, we sought the absolutely simplest Riemannian metric that theBpace
supports. The most obvious Diff!)-invariant weak Riemannian metric on the space of
immersions is thed °-metric:

G(h, k) = /Sl(h(G),k(G)HC/(@)IdG
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wherec : 1 — R?is an embedding defining a point B, and#, k are vector fields
along the image curve, defining two tangent vectors to {§%R?) at c. This induces

a Diff(s1)-invariant weak Riemannian metric on the space of all immersions and on
Emb(s1, R?), and for the latter space it induces a weak Riemannian metric on the base
manifold B,.

Surprisingly, the Riemannian distance defined as the infimum of the arc length of
paths connecting two points i, (5%, R?) turns out to be 0 (see 3.10)! This seems to
be one of the first examples where this purely infinite-dimensional phenomenon actually
appears.

Motivated by the proof of this result 3.10 we are led to consider the invariant Rieman-
nian metric 3.2.6, for a constant > 0,

GA(h, k) = /1(1+ Ak (0))(h(0), k(©))|c'(0)| db
s

wherex.(9) is the curvature of at c(9). We will argue that this induces a reasonable
metric onB, (51, R?), as the infimum of the arc lengths of paths connecting distinct points
is always positive. Another reason is that the length functiorB, (5%, R?) — R has

the following Lipschitz estimate 3.3.2 with respect to this Riemannian distance:

1
VHC) = Vo) = == dist’s, (C1, C2).

In fact, one can bound the &thet distance between two curves in terms of this metric
(see 3.5). The completion of the space of smooth curves in this metric contains all curves
whose curvature exists weakly as a finite signed measure (e.g. piec&iseves) and

is contained in the space of Lipschitz maps fr6fto R2 modulo a suitable equivalence
relation (see 2.11).

The geodesic equation for the meti* on Emist, R?) and onB. (51, R?) can
be found in 4.1.1: It is a highly non-linear partial differential equation of order 4 with
degenerate symbol, but which nonetheless seems to have a hypoelliptic linearization. If
A = 0, the equation reduces to a non-linear second order hyperbolic PDE, which gives a
well defined local geodesic spray. For aythe sectional curvature aB, (S1, R?) has
an elegant expression which can be found in 4.6.2 and 4.6.4. It is non-negative 0
and, for general, becomes strictly negative only if the curve has large curvature or the
plane section has high frequency. Of course we would have liked to solve the problem
of existence and uniqueness of geodesicsAor- 0. We can, however, translate the
minimization of path length in our metric into an anisotropic Plateau-like problem: In
3.12 we show that a curve projects onto a geodesi, iis*, R?) if and only if its graph
in [0, 1] x R? is a surface with given boundary @} x R? and{1} x R? which is critical
for the anisotropic area functional 3.12.3.

In 5.1 we determine the geodesic running through concentric circles and the equa-
tion for Jacobi vector fields along this geodesic. The solution of the ordinary differential
equation 5.1.1 describing this geodesic can be written in terms of elliptic functions. This
geodesic is no longer globally minimizing when the radius of the circles is large com-
pared tov/A and has conjugate points when it hits this positive curvature zone. In 5.2
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we study geodesics connecting arbitrary distant curves, hence requiring long translations.
The middle parts of such geodesics appear to be approximated by a uniformly translating
‘cigar’-like curve with semi-circular ends of radiug¢A connected by straight line seg-
ments parallel to the direction of translation. These figures were found by numerically
minimizing a discrete form of the energy functional 3.12.1.

Finally, in 5.3 and 5.4, we have some further pictures of geodesics. First we examine
the formation of singularities when a small perturbation is propagated forward and.
Then we look at some geodesic triangleBinwhose vertices are ellipses with the same
eccentricity and center but different orientations. For various values, afe find that
these triangles have angle sums greater and lesstithan

2. The manifold of immersed closed curves

2.1. Conventions. It is often convenient to use the identificatid = C, giving us:

Xy ={(x,y)+idetx,y), detx,y)=(ix,y).

We shall use the following spaces Gf° (smooth) diffeomorphisms and curves, and we
give the shorthand and the full name:

Diff (S1), the regular Lie group [([6], 38.4) of all diffeomorphisndd — S with its
connected components DifSt) of orientation preserving diffeomorphisms
and Diff~(S1) of orientation reversing diffeomorphisms.

Diff 1(S1), the subgroup of diffeomorphisms fixingd . We have diffeomorphically
Diff (S1) = Diff1(S1) x S = Diff ] (1) x (St x Zy).

Emb = Emb(s1, R?), the manifold of all smooth embeddingd — RZ2. Its tangent
bundle is given byl Emh(S1, R?) = Emb(St, R?) x C*®(§1, R?).

Imm = Imm(s%, R?), the manifold of all smooth immersion$! — R2. Its tangent
bundle is given byl Imm(s1, R?) = Imm(St, R?) x C®(S1, R?).

Imm; = Imm;(S%, R?), the manifold of all smooth free immersios$ — R?, i.e., those
with trivial isotropy group for the right action of Dif§1) on Imm(s?, R?).

B. = B.(S1,R?) = Emb(st, R?)/Diff (§1), the manifold of 1-dimensional connected
submanifolds ofR? (see 2.3).

B; = B;i(51, R?) = Imm(S1, R?)/Diff (§1), an infinite-dimensional ‘orbifold’; its points
are, roughly speaking, smooth curves with crossings and multiplicities (see
2.5).

Bi s = B; r(S1, R?) = Immg (S, R?)/ Diff (S1), a manifold, the base of a principal fiber
bundle (see 2.4.3).
We want to avoid referring to a path in our infinite-dimensional spaces like Imm or
B, as a curve, because it is then a ‘curve of curves’ and confusion arises when you refer
to a curve. So we will always talk gfathsin the infinite-dimensional spaces, not curves.
Curves will be inR2. Moreover, ifr — (0 — c(z,0)) is a path, its™ curve will be
denoted by:(t) = c(¢, ). By ¢; we shall denote the derivatidec, andcy = dyc.
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2.2. Length and curvature onlmm(st, R?). The volume form ons! induced byc is
given by

vol : Emh(st, R?) — QY(sY),  vol(c) = |cg|db, 1)
and its derivative is
h ’
avol() () = 19 4. )
|col
We shall also use theormal unit field
. Co
Ne =1——.
|col
The length function is given by
¢ Imm(SLRY) - R, f(c) = / lco| d6, (3)
Sl
and its differential is
h
de(c)(h) =f ho:0) 4 — -/ (n 2~ <C‘”’§9>cg>d9 (@)
st eal st\ o eql |col

= —/ (h,Kk(c)-icyg)df = —/ (h, ne)x (c) vol(c).
st st

The curvature mapping is given by

det(cy, ico,
ko Imm(st, R — C®(SLR),  «(c) = t(|C9|3699) = (lc|9 |CE’(>9(9>
Co Co

(5)

and is equivariant so thatc o f) = +«(c) o f for f € Diff ¥ (S1). Its derivative is given
by
(iho, cop) | (ico, hoo) (ho, co)

drk(c)(h) = — 3k (c) 6
|col® |col® lco|? ©
With some work, this can be shown to equal
h, h,i 1 1 ((h,i
diey(hy = P9 4 b 109>K2+—<—<—( ”’m) ) . (7)
leal |cal lcal \lcal \ lcal Jg/4

To verify this, note that both the left and right hand side are equivariant with respect
to Diff (S1), hence it suffices to check it for constant speed parametrizationg;i.és
constant andgy = «|cglicy. By linearity, it is enough to take the two cages- aicy and

h = bcy. If we substitute these into formulas (6) and (7), the result is straightforward.
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2.3. The principal bundle of embeddingsEmix$?, R%). We recall some basic results
whose proof can be found inl[6]:

(A) The seEmi(St, R?) of all smooth embedding$t — R? is an open subset of the
Fréchet spac&€ > (51, R?) of all smooth mappings? — R? with the C*®-topology. It
is the total space of a smooth principal bundte: Emhb(st, R%) — B,(S%, R?) with
structure groupDiff (S1), the smooth regular Lie group of all diffeomorphismssf
whose base, (51, R?) is the smooth Rechet manifold of all submanifolds Bf of type
s1, i.e., the smooth manifold of all simple closed curveR3n([6, 44.1]).

(B) This principal bundle admits a smooth principal connection described by the hor-
izontal bundle whose fibeX, over ¢ consists of all vector fields along ¢ such that

(h, co) = 0. The parallel transport for this connection exists and is smdf&h39.1 and
43.1)).

See 2.4.3 for a sketch of proof of the first part in a slightly more general situation.
See also 3.2.2 and 3.2.3 for the horizontal bundle Here we want to sketch the use of
the second part. Suppose that> (6 — c(z,6)) is a path in Embst, R?). Thenrx o ¢
is a smooth path i, (S1, R?). Parallel transport over it with initial valugO, -) is now
a pathf in Emi($?, R?) which is horizontal, i.e., we havgf;, f») = 0. This argument
will play an important role below. In 2.5 below we will prove this property for general
immersions.

2.4. Free immersions. The manifold Imnis?, R?) of all immersionss? — R2 is an
open set in the manifold* (S, R?) and thus itself a smooth manifold. An immersion
c: ST — R?is calledfreeif Diff (1) acts freely on it, i.e.¢ o ¢ = ¢ for ¢ € Diff (S1)
impliesg = Id. We have the following results:

(1) If ¢ € Diff (S1) has a fixed point and if o ¢ = ¢ for some immersion theng = Id.
Thisis [2, 1.3].

(2) If for ¢ € Imm(S1, R?) there is a pointx € c(ST) with only one preimage thenis a

free immersionThis is [2, 1.4]. There exist free immersions without such points: Consider
a figure eight consisting of two touching ovals, and nsago this by first transversing
the upper oval three times and then the lower oval two times. This is a free immersion.

(3) The manifold B; ((S1, R?) ([2, 1.5]). The setmmy(S?, R?) of all free immersions
is open inC*($1, R?) and thus a smooth submanifold. The projection

Immy (S, R?)

= B; /(St, R?
Diff (1) £ )

7 2 Immg (st R?) —
onto a Hausdorff smooth manifold is a smooth principal fibration with structure group
Diff (S1). By [6, 39.1 and 43.1}his fibration admits a smooth principal connection de-
scribed by the horizontal bundle with fib&f. consisting of all vector fields alongc such
that (h, cy) = 0. This connection admits a smooth parallel transport over each smooth
curve in the base manifold.
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We might view Imny (S, R?) as the nonlinear Stiefel manifold of parametrized
curves inR? and consequentl;Bi,f(Sl, R?) as the nonlinear Grassmannian of un-
parametrized simple closed curves.

Sketch of proof.See also[[2] for a slightly different proof with more details. ok
Imm; (S, R?) ands = (s1, s2) € V(c) € C®(SL, R x S1) consider

9c(s) 1 ST = R2 0.(5)(0) = c(52(0)) + 51(52(0)) - ne(52(6)),

whereV(c) is aC*-open neighborhood D, Idg1) in C>®(S1, R x $1) chosen in such
a way that:

o 55 € Diff (§1) for eachs € V(c).
e ¢.(s) is afree immersion for eache V(c).
e For(s1, s2) € V(c) anda e Diff (S1) we have(sy, s2 o @) € V(c).

Obviously ¢.(s1, 52) o @ = @.(s1, s2 o @) andsy is uniquely determined by, (s1, s2)
since this is a free immersion. Thus the inversgofs a smooth chart for the manifold
Immf(Sl, RR?). Moreover, we consider the mapping (which will be important in Section 4
below)

Ve 1 C°(SY, (=g, €)) — Immp(SLR?),  Q(c) i= Y. (CP(SL, (—¢, &),
Ye(f)(O) =)+ f(O)n(0) = ¢.(f, 1ds1)(8),
woy: C®(SL, (=&, €)) — Bi(S1R?),

whereg is small. Then (an open subset dfjc) splits diffeomorphically into
C*® (81, (—¢, ) x Diff 1

and thus its image under, splits into Q(c) x Diff (S1). So the inverse ofr o v is a
smooth chart foB; £ (S, R?). That the chart changes induced by the mappingand
Y. contructed here are smooth is shown by writing them in terms of compositions and
projections only and applying the setting of [6]. O

2.5. Non-free immersions.Any immersion is proper sinc&! is compact and thus by
[2, 2.1] the orbit space; (S, R?) = Imm(St, R?)/ Diff (S1) is Hausdorff. Moreover, by
[2, 3.1 and 3.2] for any immersianthe isotropy group Diffs?). is a finite cyclic group
which acts as group of covering transformations for a finite covefings® — s such
thatc factors oveg. to a free immersio@ : ST — R? with ¢og,. = ¢. Thus the subgroup
Diff 1(S1) of all diffeomorphismsp fixing 1 € ST acts freely on Imnast, R?). Moreover,
for eachc € Imm the submanifold(c) from the proof of 2.4.3 (dropping the freeness
assumption) is a slice in a strong sense:

e Q(c) is invariant under the isotropy group Diffl)...
o If Q(c) o9 N Q(c) # ¥ for ¢ e Diff (S1) theny is already in the isotropy group
Diff (SY)...
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e Q(c) o Diff(s1) is an invariant open neighborhood of the orbito Diff (S1) in
Imm(S$t, R2) which admits a smooth retractiononto the orbit. The fiber—1(c o ¢)
equalsQ(c o @).

Note that also the action
Imm(s?t, R?) x Diff (§1) — Imm(St, R?) x Imm(SY, R?), (¢, ¢) — (c,cog),

is proper so that all assumptions and conclusions of Palais’ slice thearem [8] hold. These
results show that the orbit spa@(St, R?) has only very simple singularities of the
type of a coneC/{eZ’*/" : 0 < k < n} times a Fechet space. We may call the
spaceB; (51, R?) an infinite-dimensionabrbifold. The projectionz : Imm(st, R?) —

Bi (81, R?) = Imm(S1, R?)/ Diff (S1) is a submersion off the singular points and has only
mild singularities at the singular strata. The normal bundlementioned in 2.3 is well
defined and is a smooth vector subbundle of the tangent bundle. We do not have a prin-
cipal bundle and thus no principal connections, but we can prove the main consequence,
the existence of horizontal paths, directly:

Proposition. For any smooth patfe in Imm(S?1, R?) there exists a smooth pathin
Diff (S) with (0, ) = Idg depending smoothly on such that the patle given by
e(t,0) = c(t, ¢(t,0)) is horizontal:e; L eg.

Proof. Letus writee = cog fore(z, 0) = c(t, ¢(t, 0)), etc. We look forp as the integral
curve of a time dependent vector figie, 6) on S1, given byy, = & o ¢. We want the
following expression to vanish:

(0r(co@),dg(co@)) ={crop+ (cgop)y:, (coo@)pg)
= ({c1, co) o @) g + ({co, co) © ©) Yo @1
= (({cs, ca) + {cg, co) &) 0 @) @g.

Using the time dependent vector figld= —(c,, cg)/|cs|? and its flowy achieves this.
O

2.6. The manifold of immersions with constant speedLet Imm, (51, R?) be the space
of all immersions: : 1 — R2 which are parametrized by scaled arc length, so |that
is constant.

Proposition. The spacémm, (S, R?) is a smooth manifold. There is a diffeomorphism
Imm(st, R?) = Imm, (S, R?) x Diff{ (S1) which respects the splittin®iff (S) =
Diff I (S1) x (5! x Zp). There is a smooth action of the rotation and reflection group
ST x Zp onlmm, (S1, R?) with orbit spacdmm, (S, R?) /(ST x Z,) = B; (S, R?).

Proof. Forc € Imm(St, R?) we put

2i [} |c’(u)|du)
fSl Ic’(w)|du )’
o Imm(st, R?) — Imm,(SY, R?),  a(c)(8) = c(o1(0)).

o. € Diff1(8Y,  06.(0) = exp(
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By the fundamentals of manifolds of mappings [6] the mappings smooth from
Imm($?, R?) into itself and we have o o = «.

Now we show that Imm(S?, R?) is a manifold. We use the notation from the proof of
2.4.3 with the freeness assumption dropped.drFedmm, (1, R?) we use the following
mapping as the inverse of a chart:

C¥(Sh (—e.8)) x St > | ] Qe +6)) = Imm, (ST, R?),
fest

(f,0) = Ve +0)(fC +0)) = a(Pe +0)(f( +6))).

The chart changes are smooth: If fof;,60;) € C®(S%, (—¢,¢)) x ST we have
a(Weyr( 161 (f1( +61) = a(Wey 16, (f2( + 62))) then the initial points agree and
both curves are equally orienteds@® + 61) + f1(0 + 6)n¢, (0 + 61) = c2(e(9) + 62)
+ f2(@(0) + 62)nc, (0(0) + 62) for all 6. From this one can expresgp, 62) smoothly in
terms of( f1, 61).

For the latter assertion one has to show that a smooth path thequighQ(c1) is
mapped to a smooth path in Diffs1). This follows from the finite-dimensional implicit
function theorem. The mappingis now smooth into ImgxSt, R?) and the diffeomor-
phism Imm(st, R?) — Imm, (S, R?) x Diff1(S1) is given byc — (a(c), o.) with
inverse(e, ¢) — e o 1. Only the groups® x Z, of rotations and reflections oft then
still acts on Immy (S1, R?) with orbit spaceB; (S, R?). The rest is clear. o

2.7. Tangent space, length, curvature, and Frenet—Serret formulas dmm, (S1, R?).
Asmooth curve — ¢( ) € Imm(St, R?) liesin Imm, (ST, R?) if and only if |9yc|2 =
lcg|2 is constant i, i.e.,dg|co|% = 2(co, cop) = 0. Thush = 9;|oc € T, Imm(S1, R?) =
C>° (81, R?) is tangent to Imm(St, R?) at the foot pointe if and only if (hg, coe) +
(hgg, co) = (hg,co)o = 0, i.e., (hg, cp) is constant ig. Forc € Imm, (S, R?) the
volume form is constant il since|cg| = £(c)/2x. Thus for the curvature we have

i o Imm, (ST, R?) — C®(S, R),

(Ve (2 \2,
k(c) = <M> t(co, cog) = (@) {ico, con),

and for the derivative of the length function we get

(ho, co) (1)
o £(c)

Sincecyy is orthogonal tay we have (Frenet formulas)

ﬂ@@zﬁl (he (D), co (D).

AW NG
Cop = <M) (ico, cop)ico = EK(C)ICG»

2
Copo = %K(C)e icog + EZ(N—C)K(C)iC% = EZ(H—C)K(C)G ico — (%) K(c)?cp.
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The derivative of the curvature thus becomes

21 \2 27 \°
di(c)(h) = —2<%) (he, co)k(c) + (@) (ico, heg).

2.8. Horizontality on Imm, (S, R?). Letus denote by Img (S, R?) the splitting sub-
manifold of Imm consisting of all constant speed free immersions. From 2.6 and 2.4.3 we
conclude that the projection Imyry (S, R?) — By (S%, R?) is a principal fiber bundle

with structure grougs? x Zj, and it is a reduction of the principal fibration Imm> By.

The principal connection described in 2.4.3 is not compatible with this reduction. But
we can easily find some principal connections. The one we will use is described by
the horizontal bundle with fibek/, . consisting of all vector fieldé alongc such that

(hg, co)g = O (tangent to Imm) and (h(1), ¢ (1)) = 0 for 1 € ST (horizontality). This
connection admits a smooth parallel transport; but we can even do better, beyond the prin-
cipal bundle, in the following proposition whose proof is similar and simpler than that of
Proposition 2.5.

Proposition. For any smooth patla in Imm, (51, R?) there exists a smooth curyg
in ST with ¢.(0) = 1 depending smoothly ansuch that the patla given bye(z, 6) =
c(t, p:(1)0) is horizontal:e; (1) L eg(1). O

2.9. The degree of immersions Recall that the degree of an immersion St — R? is
the winding number with respect to 0 of the tangeént s* — R2. Since this is invariant
under isotopies of immersions, the manifold I, R?) decomposes into the disjoint
union of the open submanifolds Infigs?, R2) for k e Z according to the degree We
shall also need the space Irﬁmﬁ‘l, RR?) of allimmersions of degrelewith constant speed.

2.10. Theorem.

(1) The manifoldmm/ (51, R?) of immersed curves of degréecontains the subspace
Immf (S, R?) as smooth strong deformation retract.

(2) For k # 0the manifoldmmf (s, R?) of immersed constant speed curves of degree
k containsS! as a strong smooth deformation retract.

(3) For k # 0the manifoldB (S, R?) := Imm¥ (S, R?)/ Diff *(S?) is contractible.

Note that fork # 0, Imn is invariant under the action of the group Diffs?) of orienta-
tion preserving diffeomorphism only, and that any orientation reversing diffeomorphism
maps Imm to Imm*.

The non-trivial ST in Imm* appears in two waysu] by rotating each curve around
¢(0) so thatc’(0) rotates, and (b) also by actir}f > 8 — (c(0) — ¢(B6)). The two
corresponding elementsandb in the fundamental group are then relatedddy= b,
which explains our failure to describe the topological typé.?lE'}f

Proof of Theorem 2.10(1) is a consequence of 2.6 since I?M'Sl) is contractible.
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The general proof is inspired by the proof of the Whitney—Graustein thedrem,|[9], [4],
[3]. We shall view curves here agZperiodic plane-valued functions. For any curvee
consider itxenter of mass

. 1 o / 2
C(c) = Centefc) := %/A c(u)|c’ ()| du € R,

which is invariant under Diffs1). We shall also use(c) = ¢/(0)/|c’(0)|.

The casek # 0. We first embeds? into Imm(St, R?) in the following way. Forr € ST
C = R? andk # 0 we sete, (0) = ae'*? / ik, a circle of radius 1|k| traversed times in
the direction indicated by the sign bfNote that we have Ceniey,) = 0 ande,, (0) = «.

Since the isotopies to be constructed later will destroy the property of having constant
speed, we shall first construct a smooth deformation retraction[0, 1] x Immf —
Imm’i0 onto the subspace InﬁrB of unit speed degrele # 0 curves with center 0.

Letc : R — R? be an arbitrary constant speed immersion of degreeriod 2r, and
lengthé(c). Lets.(v) = fd’ |c’(u)| du be the arc length function efand put

(14 2. _ T RAC AR B
A(c,t,u)—(l t+t€(c)) <c<(1 HDu+t-s, <27Tu>> t C(c)).

Then A, is an isotopy between andc; := A(c, 1, ) depending smoothly on. The
immersioncy has unit speed, lengthr2 and Centeic;) = 0. Moreover, for the winding
numberwg around 0 we have

wo(chl[o.27]) = degc1) = degc) = k = degen(e)) = woleylo.27])-

Thus Imnf contains the space Inﬁ*r_’g of unit speed immersions with center of mass 0
and degre& as smooth strong deformation retract.
Forc € Imm’{ o @ unit speed immersion with center 0 we now construct an isotopy

t — Hl(c,t, )betweerr and a suitable curve, . It will destroy the unit speed property,
however. Fod arg= —*44Ydx \ye pyt

@e(u) = / darg sothat ¢(u) = c'(0) %™,
C’I[O,u]

1 21
a(c) == —f (pc(v) — kv) dv,
2 0
Yet,u) == (1 —t)pc(u) + t(ku + a(c)),
u 2
._ i) g0 W ie(t,v)
h(c,t,u) .—/0 e dv o /o e dv,
Hl(c, t,u) .= (0)(h(c, t,u) — Centeth(c, t, )).

Then H(c, t, u) is smooth in all variables,s2-periodic inu, with center of mass at 0,
H(1, ¢, u) equals one the,’s, and H1(0, ¢, u) = c(u). But HY(c, r, ) is no longer of
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unit speed in general. And we still have to show that A(c, 7, ) (and henced!) is an
isotopy. Now

- 1 [z
auh(c, t,u) = eﬂ//c(t,u) _ _/ en/fc(t,v) dv,
21 0

and

<1l (4)

1 2r
‘E/(; e”//c([sv) dv

If the last inequality is strict we havé, i (z, u) # 0 so thath is an isotopy. If we have
equality theny. (¢, v) is constant irv, which leads to a contradiction as followsklt£ 0
theny.(¢, 2r) — Y. (¢, 0) = 2wk so it cannot be constant for any

Let us finally check how this construction depends on the choice of the base point
c(0). We have

P+ YU) = (B +u) — oc(B),
alc(B+ ) =alc) +kB — (),
Vet )t u) = Ye(t,u + B) — ¢c(B),
hc(B+ ), t,u) =e B (hc,t, B+u)—hic,t,p)),
HYc(B+ ),t,u) = H(c,t, B+ u).

Let us now deformH ! back into Imnj . Forc € Imm; , we consider

H?(c, t,u) := A, HY(c, 1, ), u),
H3(c,t,u) = H?(c, t, u + @z (1)),

where thep for a unit speed patlf is from Proposition 2.8, so thaf3(c) is a horizontal
path of unit speed curves of length Zi.e.,d, H3(c, t,0) L 8,|0H3(c, t, u)).

The isotopyA reacts in a complicated way to rotations of the parameter, but we have
Alc(B+ ), Lu)=A(,1, %Sc(ﬂ) +u). ThusH3(c( +B).t.u) = H3(c,t,u + B),
so H3 is equivariant under the rotation grosp c Diff (S1). Fork # 0 we get an equiv-
ariant smooth strong deformation retract within I(H)mnto the subselie, : o € 1} C

Imm¥ , which is invariant under the rotation grosp c Diff (S1). It factors to a smooth
contraction onBl?‘. This proves assertions (2) and (3) ko 0. O

2.11. Bigger spaces of ‘immersed’ curvesWe want to introduce a larger space con-
taining B; (S, R?), which is complete in a suitable metric. This will serve as an ambient
space which will contain the completion & (51, R?). Let ContSt, R?) be the space

of all continuousfunctionsc : St — R2. Instead of a group operation and its associ-
ated orbit space, we introduce an equivalence relation on(€bri?). Define a subset

R c ST x 51 to be amonotone correspondenifét is the image of a map

x = (h(x) mod 2r, k(x) mod 2r),
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whereh, k : R — R are non-decreasing continuous functions such that
h(x +27)=h(x)+2r, k(x+27)=k(x)+ 27.

In words, this is an orientation preserving homeomorphism f&no St which is al-
lowed to have intervals where one or the other variable remains constant while the other
continues to increase. (These correspondences arise naturally in computer vision in com-
paring the images seen by the right and left eyes,[dee [1].) Then we define the equiva-
lence relation on Coist, R?) by ¢ ~ d if and only if there is a monotone correspon-
denceRr such that for alb, ¢ € R, c(8) = d(¢p). It is easily seen that any non-constant
¢ € Cont(S1, R?) is equivalent to am; which is not constant on any intervals $t and
that for suchei’s anddsi’s, the equivalence relation amountsdpo h = d; for some
homeomorphisnh of S1. Let B*"(st, R?) be the quotient space by this equivalence
relation. We call thesBréchet curves

The quotient metric orBfO”t(Sl, R?) is called theFréchetmetric, a variant of the
Hausdorffmetric mentioned in the Introduction, both beih§® type metrics. Namely,
define

deo(c,d) = inf ( sup [c(8) —d(@)])
monotone corresgk 0,9)€R
- inf lcoh —dle.

homeomorphi:§1— 51

It is straightforward to check that this makB&°"(s%, R?) into a complete metric space.

Another very natural space is the subB{é?(Sl, R?) ¢ BFo"(s1, R?) given by the
non-constantipschitzmapsc : ST — R2. The great virtue of Lipschitz maps is that their
images are rectifiable curves and thus each of them is equivalent to @ magphich ¢
is proportional to arc length, as in the previous section. More preciselysifipschitz,
thency exists almost everywhere and is bounded and we can reparametrize by

0 2
h<9>=/ |ce|d0/f lcal do,
0 0

obtaining an equivalent for which |dy| = L/2x. Thisd will be unique up to rotations,
i.e. the action of§1 in the previous section.

This subspace of rectifiable &het curves is the subject of a nice compactness the-
orem due to Hilbert, namely that the set of all such curves in a closed bounded subset
of R? and whose length is bounded is compact in thiecRet metric. This can be seen
as follows: we can lift all such curves to specific Lipschitz mapghose Lipschitz con-
stants are bounded. This set is an equicontinuous set of functions by the bound on the
Lipschitz constant. By the Ascoli—Arzetheorem the topology of pointwise convergence
equals then the topology of uniform convergencesénSo this set is a closed subset in a
product ofS? copies of a large ball ifR?; this product is compact. The &het metric is
coarser than the uniform metric, so our set is also compact.
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3. Metrics on spaces of curves

3.1. Need for invariance under reparametrization. The pointwise metric on the space
of immersions Imnis?, R?) is given by

Ge(h, k) = /1(h(9),k(9))d9.
S

This Riemannian metric is not invariant under reparametrizations of the vatiadbel
thus does not induce a sensible metric on the quotient sp@sé, R?). Indeed, it induces
the zero metric sincéor any two curve<g, C1 € B;(S1, R?) the infimum of the arc
lengths of curves itmm($?, R2) which connect embeddings, ¢1 € Imm(S1, R?) with
7(c;) = C; turns out to be zeraTo see this, take any in the Diff(S1)-orbit over Co.
Take the following variatior (0, t) of cq: for 6 outside a small neighborhodd of length
cof1in S, c(@, 1) = co(0). If 6 € U, then the variation for € [0, 1/2] moves the small
part of cg so thatc(9, 1/2) for 6 in U takes offCq, goes toC1, traverses nearly all af4,
and returns t@o. Now in the orbit througla(-, 1/2), reparametrize in such a way that the
new curve is diligently traversings for 6 ¢ U, and foré € U it travels back taCo, runs
alongCo, and comes back 6. This reparametrized curve is then varieddfar [1/2, 1]
in such a way that the part fér € U is moved toward€,. It is clear that the length of
both variations is bounded by a constant (depending on the distance befywaedC,
and the lengths of bottig andC1) timese.

3.2. The simplest Riemannian metric onB;. Let i,k € C*(S1, R?) be two tan-
gent vectors with foot point € Imm(S?, R2). The induced volume form is val) =
(3pc, gc)/2do = |cg| dO. We consider first the simplE© weak Riemannian metric on
Imm(St, R?):

Ge(h, k) = fgl(h(O),k(O))IC’(G)Id@, 1)

which is invariant under Diffs1). This makes the map : Imm(s%, R?) — B;(S1, R?)
into aRiemannian submersidpff the singularities ofB; (S1, RZ)), which is very conve-
nient. We call this the4%-metric

Now we can determine the bundé — Imm(S1, R?) of tangent vectors which are
normal to the Diff S1)-orbits. The tangent vectors to the orbits d&c o Diff (s1)) =
{g-co: g € C®(S1, R)}. Inserting this fork into the expression (1) of the metric we see
that

No = {h € C®°(SY, R?) : (h, cy) = O}
= {aicy € C®°(SY, R?) :a € C®(SL, R)}
= {bn. € C®°(SYL,R?) : b € C*(SL R)}, 2)

wheren, is the normal unit field along.
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A tangent vectoh € T, Imm(S1, R?) = €*(S1, R?) has an orthonormal decompo-
sition

h=h' +h*eT.(coDiff T (S)) ® N, where

h
pT = ’C(’>ce € T.(c o Diff T (51)), (3)
|col?
h,i
ht = %'69 e N,
ol

into smooth tangential and normal components.

Since the Riemannian metrié on Imm(S, R?) is invariant under the action of
Diff (S1) it induces a metric on the quotieBt (S, R?) as follows. For anyCo, C1 € B;,
consider all liftingscg, ¢c1 € Imm such thatr(co) = Cop, 7(c1) = C1 and all smooth
curvest — (0 — c(t,0)) in Imm(St, R%) with ¢(0, ) = cg ande(l,-) = c1. Since
the metricG is invariant under the action of Diff!) the arc length of the curve —
7(c(t, ) in B;i(St, R?) is given by

1 1
L) == L (n(c(t, ) = /0 VoI - e, Tom - ¢r) dt = fo Gelct, ey dt
1 . . 1/2
=/ (/ <<Ct’lc;>ic€, <C”’Cz">ic9>|ce|d9> dt
o \Jst\ |cgl |col
1 1/2 1 do 1/2
=f (/ (c,,nc)2|69|d6> dt:/ </ (c,,ice)z—) dt. (4)
0 \Jst 0o \Jst lco

The metric onB; (51, R?) is defined by taking the infimum of this over all pathgand
all lifts co, c1):

distg; (C1, C2) = inf LE'(c).

Unfortunately, we will see below that this metric is too weak: the distance that it
defines turns out to be identically zero! For this reason, we will mostly study in this paper
a family of stronger metrics. These are obtained by the most minimal char@eWe
want to preserve two simple properties of the metric: that it is local and that it has no
derivatives in it. The standard way to strengthen the metric is go fromi%metric to an
H!-metric. But when we work out the naturAI*-metric, picking out those terms which
are local and do not involve derivatives leads us to our chosen metric.

We consider next thé/! weak Riemannian metric on Imi$it, R?):

hg, k
Gilh k) = /5 1(<h<e>, k(@) + A » |28))|Cel do, Q)

Co

which is invariant under Diffs1). Thusz : Imm(St, R?) — B;(S1, R?) is again aRie-
mannian submersiooif the singularities oB; (S, R?). We call this theH *-metricon B;.
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To understand this metric better, we assume k = aicg/|cg| +bcy/|co|. MoOreover,
for any functionf (9), we write f; = fy/|cg| for the derivative with respect to arc length.
Then

h
hs = |C_9| = (aics + bcg)s = (as + kb)ics + (by — ka)cs.
0

Therefore
GX(h, h) = / (@® + b? + A(as + kb)® + A(by — ka)?) ds
s

= fl(az(l + Ak?) 4 Aa?) + 2Ak (agh — bsa) + (b*(1 4 Ak?) + Ab?) ds.
S

Letting 71 andT> be the differential operato® = I+Ak2—A(L£)2, Tr = Ak, +2c L),
then integrating by parts oft, we get

G, n) = /1(T1(a) -a+ 2Tx(a) - b + T1(b) - b) ds.
S

Note that7y is a positive definite self-adjoint operator on functionsemence it has
an inverse given by a Green’s function which we Wﬂﬁ'lél. Completing the square and
using the fact that is self-adjoint, we simplify the metric to

Gih, h) = / (T1(a)-a—T; X (T2(a))- Ta(a) + T1(b+Ty H(T2(a))) - (b+T; H(T2(a)))) ds.

If we fix a and minimize this irb, we get the bundl&/t — Imm(s?1, R?) of tangent
vectors which ar&1-normal to the Diff $1)-orbits. In other words

NE={h e C®(SYLRY) : h =aics + bey, b= —T;  (T2(a)))

and on horizontal vectors of this type

Glh, h) = /((1 + Ak?)a® + Aa®) ds — f T, H(T2(a)) - Ta(a) ds.

c

If we drop terms involvingz,, say because we assuiag| is small, then what remains is
just the integral of 1 + Ax?)a? plus the integral ofrl_l(/csa);csa. The second is a non-
local regular integral operator, so dropping this we are left with the main metric of this
paper:

GA(h, h) = /(1+ Akda?ds, h=aics,
C

which we call the H2-metric with curvature weightA. For further reference, on
Imm(S?, R2), for a constantt > 0, it is given by

Gl (h, k) = fsl(l+ Ae(0)*)(h(6), k(9)) ' (0)] dO, (6)
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which is again invariant under Di1). Thusz : Imm(st, R?) — B; (S, R?) is again

a Riemannian submersiooff the singularities. Note that for the metric (6), the bundle
N c TImm(st, R?) is the same as far = 0, as described in (2). The arc length of a
curvet — w(c(t, -)) in B; (S, R?) is given by the analog of (4),

1 1
L% (c) := Lga(r(c(t, -))):/0 \/Gg(c)(Tcn.c,,Tcn-c,)dz=/O JGAH ¢y de

1/2

1
=/< (1+AK3)<ctvnc>2|09|d9) dt
o \Ust

' o \"?
=f (f (1+Ax3)(ct,ic(9)2—> dr. @)
0 \Jst |col

The metric onB; (S1, R?) is defined by taking the infimum of this over all pathgand
all lifts co, c1):

disty, (C1, C2) = inf LI ().

Note that if a pathr(c) in B;(S1, R?) is given, then one can choose its lift to a path
in Imm(S1, R?) to have various good properties. Firstly, we can choose the(Dft )

of the inital curve to have a parametrization of constant speed, i.e. if its lengthhien
lco|(0,0) = £/27 for all & e S1. Secondly, we can make the tangent vectar &very-
where horizontal, i.e(c;, cg) = 0, by 2.5. Thirdly, we can reparametrize the coordinate
on the path of lengtti so that the path is traversed at constant speed, i.e.

f (L+ Ak (ct,ico)?dB/|cg| = L? forall0<r < 1.
s

3.3. A Lipschitz bound for arc length in G4. We apply the Cauchy—Schwarz inequality
to the derivative 2.2.4 of the length function along a path c(¢, ):

9t(c) = dl(c)(c;) = — /SIK(C)(Cz, ne)leg|do < /SlK(C)(Cz,nc)ICeldG‘

1/2 1/2
5(/ 12|c9|d9) (/ K(c>2<c,,nc>2|ce|d0>
si si

1 1/2
< ‘(C)Mﬁ(/SJH Ak ()?){cr, ne)?leol d9> :

Thus

8 (/T = 2t L 1+ Ax(c)? 21001 d6 v
 ( (C))_Zm_m<fsl( + Ak (c)%){cr,ne) sl )

and by using 3.2.7 we get
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1
V@D — o) = / 8, (VL) di
1/2
(/ (1+A1<(c) Y{cs, ne) |ce|d9) dt

sz” (1)

If we take the infimum over all paths connectingwith the Diff(S1)-orbit throughc; we
get:

Lipschitz continuity of /¢ : B;(S,R?) — Rsg. For Co andCy in B;(S1,R?) =
Imm(St, R?)/ Diff (S1) we have, forA > 0,

1 | 3
VHC) —ViCo = 5= dist’, (C1. C2). 2)

2f

3.4. Bounding the area swept by a path inB;. Secondly, we want to bound the area
swept out by a path starting fro@y to reach any curv€'; nearby in our metric. First we
use the Cauchy—Schwarz inequality in the Hilbert spade?, |co (1, 0)| d6) to get

/11- lee (2, ) o (2, 0)1dO = (1, |er]) 2
s

1/2 1/2
< 1l 2llerlle = (/Sl |Ce(h9)|d9> (/S1 |Ct(t79)|2|c(9(t79)|d9> .

Now we assume that the variatiofr, 9) is horizontal, so thafc;, ¢y) = 0. ThenL ;4 (c)
= Lg‘i{(c). We use this inequality and then the intermediate value theorem of integral
calculus to obtain

1
LY (c) = Lga(c) =/O VG e codr

! 1/2
0 N

1 1/2
zf (/ |ct<t,9)|2|ce<t,9)|de> di
0 s1
1 -1/2
zf (/ |ce<r,9)|d9> / lex(t, 0)] lea (1, 0)| d6 di
0 si s1
12 .1
=</ |c9(ro,9)|d9> //|ct<t,9)||ce(t,0)|d9dr
st 0 st

for some intermediate value9 1 < 1,

T
= —— |detdc(z, 0)|d6 dt.
£(c(t0, -)) J[0.1]x st
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Area swept out bound. If ¢ is any path fronCq to C1, then

area of the region swept [ . hor
( out by the variation: 5 < maxy e, ) - Lgale). (1)

This result enables us to compare the double C(Bféfsl, RR?) of our metric space
Bi (S, R?) consisting of oriented unparametrized curves to the fundamental space of geo-
metric measure theory. Note that there is a rhafrom B?' to the space of 1-curren®;
given by

(h1(c mod Difft (1)), w) = /

o, celmm(St, R?).
Sl

The imageh1(C) is, in fact, closed. For ang, define the integer-valued measurable
functionwe onR? by

we ((x, ¥)) = winding number ofC around(x, y).

Then it is easy to see that, as currentsC) = d(wcdxdy), hencedh1(C) = 0.

Fig. 1. Two distinct immersions o§? in the plane whose underlying currents are equal. One curve
is solid, the other dashed.

Although i1 is obviously injective on the spadg,, it is not injective onB; as illus-
trated in Figure 1. The image of this mapping lies in the basic silaget: D] of closed
integral currents, namely those which are both closed and countable sums of currents de-
fined by Lipschitz mappings : [0, 1] — R? of finite total length. Integral currents carry
what is called thdlat metric, which, for closed 1-currents, reduces (by the isoperimetric
inequality) to the area distance

d’(C1, C2) = //RZ lwe, — we,| dx dy. 2

To connect this with our ‘area swept out bound’, note that if we have anyqiath
Imm(S?, R?) joining C1 and Co, this path defines a 2-current(c) such thathw(c) =

h1(C1) — h1(C2) and
1
/ Iw(C)IdxdyS/ / |detc| d6 dt,
RZ 0 Sl
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which is what we are calling the area swept out. Blbc, — wc,) = h1(C1) — h1(C2)
t00, sow(c) = we,; — we,. Thus

d’(C1, C2) < [area swept out by]. 3)

min
all pathsc joining C1,C>
Finally, we recall the fundamental compactness result of geometric measure theory in
this simple case: the space of integral 1-currents of bounded length is compact in the flat
metric. This implies that our ‘area swept out bound’ above has the property:

Corollary.

o If {C,} is any Cauchy sequence B for the metricdist;a, then{h1(C,)} is a Cauchy
sequence iffy . on which length is bounded. _

e Henceh; extends to a continuous map from the compleBgrof B; in the metricG4
toZ1,c.

3.5. Bounding how far curves move in small paths inB;. We want to bound the maxi-
mum distance a curv€y can move on any path whose length is smalfify metric. Fix
the initial curveCg and let¢ be its length. The result is:

Maximum distance bound. Lete < min{2v/A¢, £3/2}/8 and letn = 4(¢3/4A~1/4 4+
¢1/%) /€. Then for any pathr starting atCo whose length i, the final curve lies in the
tubular neighborhood o€ of width . More precisely, if we choose the pattr, 9) to
be horizontal, themax |c(0, 6) — ¢(1, 0)| < n.

Proof. For all of this proof, we assume the path B2 has been lifted to a horizon-
tal pathe € Imm(St, R?) with |¢y|(0,0) = £/2r, so that(c;, cg) = 0, and also that
[s1(X+ Axd)|es|?lco| A0 = €. The first step in the proof is to refine the Lipschitz bound
on the length of a curve to a local estimate. Note that by horizontality

1 1/2
= Fike lor] leal?,

im_ (cor,co) _ (cr.cop) _(Cz,ice)K g | M2
o1 20co[32 T 2lcq[32 2lcal 7
hence

d 2 €2
/ —Vlcol) ds < —.
s 8[ 4A
Now we make the key definition:

lcg|(t,0) = min |cg|(1,0).
O<t1<t

Note that the-derivative of@| is either 0 or equal to that ¢fy| and is< 0. Thus

¢ — 1 9 = 1 9
—_— — 1,0))do < —— do dt < —
/Sl(,/zﬂ Jial )) _/Ofs e _/Ofsl‘mwcm
2\ 12
2 Jical d9> dt

< o) (L

€
<27 .
a 2V A

do dt
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To make use of this inequality, ¢t = {6 : |?;|(1, 0) <(1- (Ae)‘fﬁ\/E)E/Zn}. Our
assumption o gives(Af) Y4 /e < 1/2, hence ors' \ E we havejcg| > £/4r. OnE
we have alsd|cy|)Y/? < (1 — (A0)~Y4/e/2)/T/2. Combining this with the previous
inequality, we get (wherg (E) is the measure af)

JE

hence w(E) <2r——— < 7.

1 Y, 1/4
M(E)—<_> \/ES \/Z (AE)1/4

&
227 \ A 2JA’

We now use the lower bound ¢y | on ST — E to controle(1, ) — ¢(0, 6):

1
/ |c(1,9)—c(0,9)|d9§// leg| d6 dt
S1_E 0 JSi1-E

1 1/2
< «/271/ </ |c,|2d9) dt
0 S1-E

Vor 1 ) 172 2/2n
< lce|lea| dO dt < g.
/A Jo \UJsi—g NG

Again, introduce a small exceptional sBt= {# : 0 ¢ E and|c(1,60) — ¢(0,6)| >
014, /e}. By the inequality above, we get

2\/27'[8 2\/§7T &
W(F) - €Y%/ < T hence /L(F)Szg—/;/_<ﬂ

The last inequality follows from the second assumptiore oKnowing w(E) and w(F)
gives us the lengthg (0, E)| and|c(0, F)| in R2. But we need the lengths(1, E)| and
lc(1, F)| too. We get these using the fact that the whole lengtfi;ofannot be too large,
by 3.3:

VIC1| < £+m, hence |C1| <+ 2¢ " <0+ e- e
On S\ E we havelcy| > (1 — (A)~Y4 /e)¢/2r, thus we get

le(L, EU F)| = |C1] — le(L, ST\ (E U F))]

3/4
5e+ﬁg (1 ve )%(Zn—,u(EUF))

yercial Cllyv
£3/4 f 14

Finally, we can get froma(0, 9) to c(1, 8) by going viac(0, 8’) andc(1, 8’) whered’ ¢
ST\ (EUF) # ¢. Thus

max|c(0, 6) — (1, 0)| < (0. EU F)| + Y3/ +1c(L, EU F)|

< 43AATYA L gV e u!
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Combining this with the Lipschitz continuity of the square root of arc length, we get:

3.6. Corollary. ForanyA > 0, the map fromB; ($1, R?) thedist;4 metric to the space
BfO”t(Sl, R?) in the Fréchet metric is continuous, and, in fact, uniformly continuous on
every subset where the lengths bounded. In particulamlist;s is a separating metric
on B;(S1, R?). Moreover, the completioB; (S, R?) of B; (S, R?) in this metric can be
identified with a subset &8, (S, R2).

If we iterate this bound, then we get the following:

3.7. Corollary. Consider all paths inB; joining curvesCo andCy. Let L be the length
of such a path in thelist;4 metric and let¢min, £max be the minimum and maximum of
the arc lengths of the curves in this path. Then there are parametrizatipus of Co
and Cq such that

meax|co(9) —c1(0)] <50maxLF*, /fmaxL F*), where

1 gmax)
F* = max(—, — ).
Vﬁmin A

To prove this, you need only break up the path into a minimum number of pieces for
which the maximum distance bound 3.5 holds and add together the estimates for each
piece. We will only sketch this proof which is straightforward. The constant 50 is just
what comes out without attempting to optimize the bound. The second option for bound,
50/ ¢maxL F* is just a rephrasing of the bound already in the theorem for short paths.
If the path is too long to satisfy the condition of the theorem, we break the path at
intermediate curveg’; of length ¢; such that each begins a subpath with length=
min(J/A¢;, E?/z)/S and which do not overlap for more than 2:1. TRUse; < 2L. Then

apply the maximum distance bound 3.5 to each piece, lettifg the bound on how far
points move in this subpathr any parts thereoénd satisfy

ni < 2«/5&' < 16\/§£iF*,
from which we get what we need by summing over
3.8. Afinal corollary shows that if we parametrize any path appropriately, we get explicit
equicontinuous continuity bounds on the parametrization depending orly Gux and
¢min- This is a step towards establishing the existence of weak geodesics. The idea is
this: instead of the horizontal parametrizati@pn cy) = 0, we parametrize each curve at

constant speefty| = ¢(r)/27 wherel() is the length of the™ curve and ask only that
{ct, c9)(0, 1) = 0 for some base point € [0, 2] (see 2.8). Then we get:

Corollary. If a pathe(z, 0), 0 <t < 1 satisfies
lcg(t,0)| =L@)/2r and {(c;,cy)(,00 =0 forallg,:¢,

/(1+A/cgr)|(ct,i09)|2d9/|09|ELZ for all ¢,
c
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then

L 3/4 1/4
le(t1, 61) — (12, 62)] < ;‘;‘le — 6o 4 T(Urax/ AY* + a0V L (11 — 12)

whenevelr; — t2| < MiN(2/Almin, Kg/ﬁ)/(8L).

mi
Proof. We need to compare the constant speed parametrization here with the horizontal

parametrization—call it*—used in the maximum distance bound 3.5. Under the hor-
izontal parametrization, let the poiy, #1) on C;, correspond tdzz, 67) on Cy,, i.e.

c(12,65) = c* (12, 61). Let C = (Cmax/ AY* + £ia). Then we know from 3.5 that

lc(t1, 01) — c(t2, 07)| < 4C+/L(t1 — t2).

To compared; andé;’, we use the properties of the gein the proof of 3.5 to estimate

(07 —61)L2 N 01€>
- @7 "= 1, do — —=
- /0 lcp (22, ) do o
VL(t1 —12) l1 Oil2
> (1_W (el_M(E))Z_E
~L(t1 —12)
> _ZZlW — €1 — £2]
and similarly
2w — 0F) — (27 — 0L 2n 2r — 6)¢
(2 —67) — ( 1))2:/ |c§(lz,(p)|d(p—(n 1)€2
2 o1 2
VL(11 — 12)
> —Zflw — €1 — £2].

Combining these and using the Lipschitz property of length, we get

0F —01)¢
% < 2C/L(t1 — t2) + 2101 — /€2y tmax

L(t1 — 5
<20/Li—1) + ﬂmax% < >cVIa ).

Thus, finally
lc(t1, 01) — (12, 62)| < |c(t1, 61) — c(t2, 07)]
+ |c(r2, 67) — c(t2, 61| + |c(r2, 61) — (12, 62)|

5 ¢
§4C\/L(t1—t2)+§C L( — t2) + ;‘;"|91—92|. o
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3.9. One might also ask whether the maximum distance bound 3.5 can be strengthened
to assert that the 1-jets of such cuné@snust be close to the 1-jets 6b. The answer is

NO, as is easily seen from looking at small wavelet-type perturbatiofis.@pecifically,
calculate the length of the patky, 6) = co(8) +1-af (6/a)-i(co)e(0),0 <t < 1, where

f is anarbitrary €2 function with compact support andis very small. We claim the
length of this path i< (,/a), while the 1-jet at the point = 0 of the final curve of the

path approached + i f'0)(co)g (0).

We sketch the proof, which is straightforward. L@} ; be the curves on this path.
Then sufc,| = O(a), suplkc,,| = O(1/a), A < |cy| < B for suitableA, B > 0 and
£(supficy)) = O(a). Then the integralf i (1 + Ak2)(c;, icp)? % breaks up into two
pieces, the first bein@ (a?), the second bein@ (1) and the integral vanishing outside an
interval of lengthO (a). Thus the total distance 8 (./a).

3.10. The HOdistance onB; (51, R?) vanishes. Let cg, c1 € Imm(S1, R?) be two im-
mersions, and suppose that> (9 — c(t,6)) is a smooth curve in Imgst, R?) with
c(0, ) =cgandc(l, ) = c1.

The arc length for théZ%-metric of the curve — n(c(z, -)) in B; (S, R?) is given

by 3.2.7 as
1 do \Y?
L) = / ( / <ct,ic9>2—> dr. (1)
o \Jst lca |

Theorem. For co,c1 € Imm(St, R?) there always exists a path — c(z, -) with
(0, ) = cg andm(c(1, -)) = m(cy) such thatLg%r(c) is arbitrarily small.

Heuristically, the reason for this is that if the curve is made to zig-zag wildly, say with
teeth at an angle, then the length of the curve goes up by a factgcadlw) but the
normal component of the motion of the curve goes down by the factogesand this
normal component is squared, hence it dominates.

Proof. Take a pathe(z, 8) in Imm(S%, R?) from cq to ¢1 and make it horizontal using 2.5
so that(c;, cg) = 0; this forces a reparametrization on

Now let us viewc as a smooth mapping : [0, 1] x [0,1] — R2. We shall use
the piecewise linear reparametrizati@nz, ), 6) of the square shown above, which for
0 < r < 1/2 deforms the straight line into a zig-zag of height 1 and petj&iconnecting
the two end-curves, and then removes the teeth fard ¢+ < 1. In detail: Letc(¢, 0) =
c(p(t, 0),0) where

2t(2n6 — 2k) for 0<r<1/2 % <o <ZH
2t (2k +2 — 2n0) for 0<r<1/2 &t <9< &t2
0(1.0) = 2 2
2t — 1+ 2(1—1)(2n6 — 2k) for 1/2<t <1, 2 <g<ZH
20 —1+21-1)(2k+2—2n0) for 1/2<r<1, & <p < 2Zf2
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Fig. 2. The reparametrization of a path of curves used to make its length arbitrarily small.

Then we gety = ¢y - ¢; + cp andc; = ¢, - ¢; where

+4nt, 4n6 — 4k,
_ —4nt, _ 4k + 4 — 4no,
TV rama—-n, YT 22—+ 4,
—4n(1—1), (2 — 4n0 + 4k).

AISO, (¢, cg) = O implies @, ics) = ¢ - ler| - leo| and|és] = legly/1+ @Z(1crl/leo ).
Thus

1 l d9 1/2 ]_ l 2 2 1/2
Lhor(5)=/ (/ <Ez,i59>2~—> dt:/ (/ Mw) dt
o ! o Vo /14 gBfehy?

_ / 1/2(”21( / (40— 4710 0Pl e, O]
0 i—o\/ 5 \/]_ + (dnt)( ‘|Cz(§0 9)|‘ )2

+/ 2 (4 44— 4n60)2|c, (9, 0)[2|ca (@, 0))] 9>>1/2dt

4 \/1 + (nr)2([eleDly2

+/1 (nz—:l(/ (2= 410 +40)%Ici (9, ) Pleate, O
12\ =\ Sz

/2\1=0 \/1 + (4n)2(1 — t)Z(‘\Ct(QO 0| )2

+ / i (2= 4n0 + 402|c (¢, 0)2lco (¢, )] 9))1/2 N
% \/1+(4n)2(1 t)z(\Ct(wG)l)z

N
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The function|cy (¢, 0)| is uniformly bounded above and away from 0, dndgp, 0)| is
uniformly bounded. Thus we may estimate

+.

_ 2k+1
i/ 5 (4n0 — 46)2|c, (@, 0)2lco (g, 0)] p
=07 JL+ @22

_ 0(1)"21[21 WPl F 0. B0
S 1 @2 e 2 1+ 0). 2 o)

We estimate as follows. Fix > 0. First we split off the integrajf(f which is O(¢)
uniformly in n; so for the rest we have> ¢. The last sum of integrals is now estimated
as follows: Consider first the set of allsuch thatc: (¢(r, Z +6), Z 4 6)| < ¢ which is
a countable disjoint union of open intervals. There we get the estimate

O - n-4n?- 626%/3)0=5/" = 0(e),
uniformly in #. On the complementary set of lwhere|c, (¢(r, 2 +6), Z + 0)| > ¢
we use also > ¢ and estimate by

0=1/2n 1
0 n-an? ;. 0%3)—" = 0(@)'
The other sums of integrals can be estimated similarly, I14§¢) goes to 0 as — oo.
Itis clear that one can approximaidoy a smooth function without changing the estimates

essentially. O

3.11. Non-smooth curves in the completion oB;. We have seen in 3.6 that the com-
pletion of B; in the metricG* lies in the space of Lipschitz maps: S — R? mod
monotone correspondences, that is, rectifiabfeket immersed curves. But how big is

it really? We cannot answer this, but we show, in this section, that certain non-smooth
curves are in the completion. To be precise; if rectifiable, then we can assumés
parametrized at constant spdegl = L/27 whereL is the length of the curve. There-
forecy = (L/2m)e'*®@ for some measurable functien(@) giving the orientation of the
tangent line at almost every point. We will say that a rectifiable curie1-BV if the
function « is of bounded variation. Note that this means that the derivative exists

as a finite signed measure, hence the curvature-eihich is (27 /L)a’'—is also a fi-

nite signed measure. In particular, there are a countable set of ‘vertices’ on such a curve,
points wherex has a discontinuity and the measure giving its curvature has an atomic
component. Note that has left and right limits everywhere and vertices can be assigned
angles, namely . (0) — a_(6).

Theorem. All 1-BV rectifiable curves are in the completion Bf with respect to the
metricG4.

Proof. This is proven using the following lemma:
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Lemma. Letc(t,0),0 <t < 1, be an open path of smooth curvés) and leta (¢, ) =
arg(cy (t, 0)). Assume that

(1) the length of all curves(t) is bounded by,

(2) lct| < Co, forall (¢, 6),

(3) for all ¢, the total variation ing of a(z, ) is bounded by’3,
(4) the curvature ot(r) satisfieSk.q) (7, 0)| < Ca/t for all 6.

Then the length of this path is bounded®@y(+/C1 + 2./AC3Cy).
To prove the lemma, let be arc length or(¢) and estimate the integral

(L+ Ak (@), 0)*)cr ico/Icg)lea| dO < c%(cl +A / ko) dst>
c(t)

2 do
= C2 Cl + A KC(I) —_— dSt
c(t) ds;

C
< CZZ(C1+AT4C3).

c(t)

Taking the square root of both sides and integrating from 0 to 1, we get the result.
We apply this lemma to the simplest possible smoothing of a 1-BV rectifiable

curveco:

—p?/21? 1 —(0—9)?/21?
c(t,0) = co(® — @)e %7 g =—/ co(p)e0—¢ d
v v V2rt Jr ¢ v

=
2t JR
for 0 < r < 1. Note that is the standard deviation of the Gaussimtthe variance. We
assume has a constant speed parametrizationgne (L/2m)e'® as above, where’
is a finite signed measure. Thus,

L ia(0—p)—g?/212
ch=——==|[ ¢ do,
? (2n)3/2r/R Y
iL ia(@)—(O—-)2/22 1
C, = —7 e o d .
v (2n)3/2tfR (@)

Moreover, using the second expression for the convolution and the heat equation for the
Gaussian, we see thgt= rcgg. We now estimate:

lcg| < L/2mw, hence lengttC,) <L

L (BT 2 /22
|C99| < W/lze (@—@—nL)*/2t |Ol/|(d(,0)
St h

Ceniy222\ L - Var(@arg(cg))

/ = ( fR Jl_z o077 d9> ( / o (d(p)|> = —Var(arg(co))
lc:| = tlcog| = O(D).
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To finish the proof, all we need to do is get a lower bound@n However,|cy| can
be very small if the curvep has corners with small angles. In facg, can even double
back on itself, giving a ‘corner’ with angle. We need to treat this as a special case.
When all the vertex angles af are less tham, we can get a lower bound fdey| as
follows. We start with the estimate

1 j 20,2 ‘
lco (0)] = ‘—/ elo‘(g_‘/’)_ﬁﬁ /2t d(p/eta(é))
V2t JR
1
= Nz /ﬂ;cos(ot(G —9) —a(@))e v 12 d(p‘.

We break up the integral ovék into 3 intervals(—oo, 0 — §/2],[0 — §/2,0 + §/2],

[6 + 8/2, +00) for a suitables. If ¢ is sufficiently small, the integral of the Gaussian over
the first and third intervals goes uniformly to 0 and, on the middle interval, goesto 1. Thus
it suffices to estimate the cos in the middle interval. We use a remark on BV functions:

Lemma. For any BV functionf and anyC > 0, there is a5 > 0 such that on every
interval I of length less tham, either f|; has a single jump of size C, or we have

max(f|;) —min(f|;) <C.

In fact, letC — ¢ be the size of the largest jump jhless tharC and break up the domain
of f into intervalsJ; on each of which the variation gf is less thar /2, big jumps being
on their boundaries. I§ is less than the minimum of the lengths of the we get what
we want.

Now letr — B be the largest vertex angle of the cupge Using the lemma, choose a
3§ so that for every interval in the 6-line of length less thas, either! contains a single
vertex with exterior angle- 8/3 or maxx|; — mina|; < B/3. Now if there is no vertex
in[60—68/2,0+48/2], then|a(d —¢) —a(0)| < B/3 on this interval and our lower bound
is

lco (0)] = cos(B/3) — o(1).

On the other hand, if there is such a vertex, say, aheno varies by at mosg/3 in
[0 —4/2,0), jumps by at most — 8 at® and then varies by at mogy3 on (6, 6 +6/2].
Assumed < 6 (the cas® > 0 is similar). Then

cos8/3) ifoe@®—0,04+68/2],

coga(d —¢) —a(9)) > cosm — B+ B/3) = —cos28/3) if g e[0—8/2,0—0).

Thus
lco(0)| > 3(cos(B/3) — cos2B/3)) — (1),

hence, ift is sufficiently small, we get a uniform lower bound @n|. Sincelxc,| <
lcanl/|cal?, we get the required upper bound both|eg, | and on the variation afc,, i.e.
fSl |«c,| and all the requirements of the lemma are satisfied.

If co has a vertex with angle, we need to add an extra argumemntcertainly has at
most a finite number of such vertices and we can construct a new curve by drawing a circle
of radiust around each of these vertices and Iettiﬁ{;be the curve which followsg until
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Fig. 3. Approximating 1-BV curves with zero angle vertices by curves with positive angle vertices.

it hits one of these circles and then replaces the vertex with a circuit around the circle: see
Figure 3. Each of the curve%t) is in the completion oB; by the previous argument and

the path formed by theg)’s also has finite length, heneg is in the completion. We omit
the details which are straightforward.

3.12. The energy of a path as ‘anisotropic area’ of its graph irR3. Consider a path
t — c(t,-) in the manifold Imnist, R?). It projects to a pathr o ¢ in B; (51, R?) whose
energy is

1 b
Ega(moc) = 5/ G (T ¢, Terr - ¢) dt
a

1 (° 1 [P
- _/ GA(ct, ctydr = _/ / 1+ Ak(©)®) (i, ¢ |co| dO dr
2 a 2 a s1

l b , . , .
- Ef / (1+AK(C)2)<<Ct o), Lt ’C;>ic9>|c9|d9dz
a s1

lcal? Icol

b
:3/ /(1+A/c(c)z)(c,,ice)zd—edé‘dt. 1)
2Ja Js1 lcol

If the pathc is horizontal, i.e.{c;, cy) = 0, then(c;, icy) = |c;| - |co| and we have

1 b
@ =5 [ [ @+ ac@diePialdod () =0 2)
a S

which is just the usual energy of
Lete(z, 0) = (x(¢, 0), y(¢, 0)) be still horizontal and consider the graph

O(t,0) = (1, x(t,0), y(t,0)) € R3.

We also havéx; ys — xgy:| = |det(c;, cg)| = |ct] - |cg| and for the vector product we get
D; x Pg = (X1y9 — X0 Yr, —Y0, X9), SO

1) x Pgl? = (xry0 — x9¥)2 + ¥E + xZ = (3 + ¥ (2 + y? + 1) = |cpl?(Jer > + D).
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We express nowE""(¢) as an integral over the immersed surface R3 parametrized
by @ in terms of the surface arelug = |®; x ®y|d0O dt as follows:

EM(c) = / /(1+A ()2>|C'D" 'Ce'||d>,xd>a|d9dr
t

1/ 2 |Ct|

== A+ Ak (0)*) ——
2 Jla,b]x st Va2 +1
Next we want to express the integrand as a funcjroof the unit normalng =

(D; x Dy)/|P; x Dyg|. Leteg = (1, 0, 0). Then the absolute value of tb’n&:omponentn(sJ
of the unit normahg is

dus.

0,2
|| > ngl

9] := |(eo, ns)| = ———=—, an - ,
ler]2+1 \/|C,|2+1 \/l— |ng|2

Thus for horizontat (i.e., with¢, L ¢y) we have

Horizontal energy as anisotropic area.

1nQ?
—Od,ug.
J1-— |”S|2

Here the final expression is only in terms of the surfcand does not depend on the
curvec being horizontal. This anisotropic area functional has to be minimized in order to
prove that geodesics exists between arbitrary curves (of the same degbe€ylinR?).

Thus we are led to

©)

EXN(c) = > / 1+ Ak(©)?)
[a,b] xSt

Question. For immersionscg, ¢1 : ST — R? does there exist an immersed surface
S = (ingo.13, ©) : [0, 1] x ST — R x R? such that the functiongB) is critical at S?

A first step is:
Bounding the area. For any path[a, b] > t — c(¢, ) the area of the graph surface
S = S(c) is bounded as follows:

Area(S) = / 1dus < 2Eh°r(c) + maxﬁ(c(t NG — a). 4)
[a,b]xS

Proof. Writing the unit normalns = (19, n%, #%) e $2 according to the coordinates
(t, x, y) we have
92

_ |nS|2

1 2 1,2 2,2 0,2
|ng| + Ing| + > |ngl® + ngl°+ Ing|c =1

Since|n§|d,u5 is the area element of the projection$bnto the(z, y)-plane we have
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1nQ?
Area(S) =f dus 5/ (1+Ax(c)2)(|n§|+|n§|+— dus
[a,b] xSt [a,b] xSt /1 — |n2|2

< 2EM(0) + max¢(c(r, ))(b - a). O

4. Geodesic equations and sectional curvatures

4.1. Geodesics odmm(S?, R?). The energy of a curve — c(t,-) in the space
Imm(s?, R?) is

1 b
Ega(c) = -/ / (14 Ak?)(ci, ¢/)|co| dO dt.
2 a Sl
By calculating its first variation, we get the equation for a geodesic:

Geodesic equation.

~1+ Ak? o2 (klei®)e
(1+ Ak®)[eo| - ¢r) = (— gt A (1)
2 cal col 9
Proof. From 2.2 we have
(icse, con)  (ico, Cs00) (cs0, co)
k(c)s = 3 3 — 3k >
col Icol Icol
and (cop, co) (co,ico) . lcolo .
Coo = 5—Co 5 —ico = co + Kk (c)lcalicy.
col Icol |col
Now we compute
1 b
OsloE(c) = EBSIO/ / (L+ Ak®)(cr, er)leol d6 dt
a si
b 1+ Ax? Cs0, C
=/ / (AKKs|6‘0| ler 2+ (L+ Ak ey, cobles] + e 24652 ‘”) a6 d1
a st 2 |09|
b 2 2 2
C C C
= / / (AK(iCse, Cee)% +AK(i09,Csee)|;|2 - 314/(2(%(9,60)u
a Jst |col Icol |col
1+ Ax? |c,|?
—~ <cs, (L4 Ak®)lcoler): + (—ﬂce> >> do dt
2 lcol 0

b lc: |2 |c: |2 ol |?
= / / <<CS,A(/<—21'699> >+<CS,A(K—21'CQ> >+<CS,3A<K c§> >
a JS1 [col 0 lcol 00 lcol 0

1+AK2 ¢ ?
—<cs,((1+AK2>|Ce|c,>t+ (—' ! ca> >> 40 di
2 lca] 9

b
= [ [ e~ acdicaten + Foy o
a JS
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where
2 . : 2
lee“ ico lcalgicy lee“
F=AK—21699+A(K|C,|2)9—2—2AK|C,|2 3 + Ak €09
Icol col |col |col
2 2 2
c 1+ A< e
+3AK2|t| co— et .
ol 2 col

If we substitute the expression fayy and simplify, this reduces to

—1+ Ak?|¢|? ico
F=—"——""cy+ Alklc:[P)o—5.
2 lcal lcal
which gives the required formula for geodesics.

PuttingA =0in 4.1.1 we get the geodesic equation for f&metric on Imm(SL, R?),

1 2
(lcoler) = —§<'C|’C',0|CQ> . 2)
0

4.2. Geodesics omB; (51, R%). We may also restrict to geodesics which are perpendic-
ular to the orbits of Difts1), i.e. (¢;, c¢) = 0, obtaining the geodesics in the quotient
spaceB; (S, R?). To write this in the simplest way, we introduce the ‘velocigyby set-

ting ¢, = iacy/|co| (SO thatic;|? = a?). When we substitute this into the above geodesic
equation, the equation splits into a multiplecgfand a multiple of cs. The former van-
ishes identically and the latter gives

ic —1+ Ax? C Ka? ic
(L + AkD)epla), 2 = —az(—@) + A(( )9> e
col 2 lcol /o lcal /g lcal
-1+ Ax? ka?
(L + AcP)legla), = —————k]cpla® + A<(—)9> .
2 cal )

If we use derivatives with respect to arc length instead @ind write these with the
subscripts, so thatf; = fy/|cgl, this simplifies. We need
(co,c0)  (cop,cr) {con, ico)

lcols = =— = —a >— = —ak|cp|.
|co| ol lco |

which gives us a simple form for the equation for geodesic8as?, R?):

1+ 3Ak?
2
Finally, we may expand thederivatives on the left hand side, using the formula=

ax? + agzs noted in 2.2.7; we also collect all constraint equations that we chose along the
way:

(L+ AcP)a), = Ka® + A(ica®)ss. 1)

0= (ct,cs5), ¢ =aics, Kk = (Css,IiCs),
%Kaz + A(a® (kg5 — %/{3) + digaay + 2Kasz) 2
1+ Ax? )

ar =
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Handle this with care: Going to unit speed parametrization (so thét really a holo-
nomic partial derivative) destroys the first constraint ‘horizontality’. This should be seen
as a gauge fixing.

4.3. Geodesics orB; (51, R?) for A = 0. Let us now setA = 0. We keep looking

at horizontal geodesics, so that, cs) = 0 andc; = iacy/|c| for a € C®(S1). We
use the functiong, s = |cy|, andx. We use equations from 4.2 but we do not use the
anholonomic derivative:

1/ag age  agse
S; = —aks, a; = %Kaz, K = ac’+ () =a?+ 2 - 22, (1)
s\ s
0

We may assume that;—g is constant. Let () = a(0, ) be the initial value for. Then
from equations (1) we get

S a
L= _ak=-2-t, hence logsa®), =0,
S a

so thatsa? is constant i,
s(1,0)a(t, 6)? = 5(0,0)a(0, 6)* = v(6)>, 2
a smooth family of conserved quantities along the geodesic. This leads to the substitutions

v a;
S = 5 K:2—2,
a a

which transform the last equation (1) to

2 6 6 5.2
a; a-dapg a-dagvg a~a,

ay AL — S e — 2 =0, a(0.0) = v(). ®3)

a non-linear hyperbolic second order equation. Note that (2) implies that whereveér
then alsaz = O for all 7. For that reason, let us transform equation (3) into a less singular
form by substituting: = vb. Note thatb = 1/./s. The outcome is

3vvgg

2
(b_g)n=—%(b3)99—2vv9(b3)9— b3, b(0.0) =1 4)

4.4. The induced metric onB;, 7 (S, R?) in a chart. We also want to compute the cur-
vature ofB; (S1, R?) in this metric. For this, we need second derivatives and the most con-
venient way to calculate these seems to be to use a local chart. Consider the smooth prin-
cipal bundler : Imm; (S, R?) — B; ¢(S1, R?) with structure group Diffs*) described

in 2.4.3. We shall describe the metric in the following chart néas B,-,f(Sl, R?): Let

c € Immf(Sl, RR?) be parametrized by arc length with(c) = C of length L, with unit
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normaln.. We assume that the parametgeruns in the scaled circIﬂ% below. As in the
proof of 2.4.3 we consider the mapping

Y1 C¥(SE, (=&, 8)) — Imms (ST, R?),  Q(c) 1= Y(C(S], (—, ),

Y (f)O) = c0) + fO)nc(0) = c(0) + f(0)ic'(0),

oy C®(ST, (—¢&,8)) — B r(S1, R?),

wheree is so small that/ (f) is an embedding for eagh By 2.4.3 the mappingroy) 1
is a smooth chart oB; (S, R?). Note that:

I/f(f)/ =c/+f/l-c/+fl-cl/ — (l_ch)c/+f/ic/’
V(Y =+ flic ¥ 2fic" + fic" = —@f ke + fiD + (e + £ = fiedyic,

1
ny(f) = - (- freic — f'ch,
A= fr)+ f

Try-h=h-ic' € C®(SY, R?) = Ty(p) Immy(St, R?)

h(1— fxc) hf’ p
= )+ U (),
Ry A
h(l— fi,
(Try -yt = (- fee) S (f) € Ny
A= fre)?+ f
Ky(f) = i () (N

(L= fr)?+ 232
ket [ =22 — ff"ke+ fAG+2f Pk + [ K]
B ((A— fre)2+ f2)3/2 '

Let G4 denote also the induced metric mf(Sl, R?). Sincer is a Riemannian sub-
mersion,Ty /7 : Ny, G@(f)) — (B r(S1,R?), G?(w(f))) is an isometry. Then we
compute, forf € C®(St, (=, ¢)) andh, k € C*®(S1, R),
(T 0 Y)* G p(h, k) = G2y () (Tr (w0 Y, Tr (0 Y)k)
=Gl (T - Y-, (T - )™)
- /Sl<1+ ARG Ty - I, (T ) W ()| do
L
hk(1— fKc)?

= [ @+Ac2 ;)
/Si P A= re0? + 17

This is the expression from which we have to compute the geodesic equation in the chart
on B; ¢ (51, R?).

deé.
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4.5. Computing the Christoffel symbols inB; ((St,R?) at C = m(c). We have to
compute second derivatives fhof the expression of the metric in 4.2. For that we expand
the two main contributing expressions fito order 2, where we put = «,:

Ky (f)
= (@ =2fk+ f3P+ [0 + 17 = 207 = ff "k + S+ 21 %+ S
=k + ("4 KO+ (FAE+ 3 1%+ ffC + 210 + O (),
L= [P =2k + [P+ fA V2 =1— =17+ 0(f3).
Thus
(1— fre)?
V- fr)?+ f2

1P AP+ AL 2A ik + Af

1+ Ak 4) =14 Ak®+2Af"k + Afk® — fi

72 + 4Aff”l(2

and finally

G#(h, k) = ((w 0 Y)*G*)r(h, k)
= [ k@t A+ @Ak A = i) = 317
+LA(4 T2+ fat 4 A PR 21 ek’ + 7P + 0(f3)do. (1)
We differentiate the metric:
dGA(H)(D)(h, k) = /Sl hk(2Al"k + (AkS — )l + 4ALf" k% + 4Af1 K2
+2Af1k? Ji (A? = 1) F'I' + 2A1f ki’ + 2Af Uk’ + 2Af"1" + O(f?)) do

and compute the Christoffel symbols:

—2G#(Ty(h, k), 1) = —dGA(fHW)(h, k) +dGA ()W) Kk, 1) +dGA(f) K, h)

- / . [((Ak® — k + 2Akk’ [+ BAK2 f" + 2Ak™ f)kh
SL

+ Ak + BAK? f + 2AF")(W'k + hk")
+ (A2 f" — '+ 24k fY(Wk + k') + O(f?)) do

- f . ('(Ak? f'hk — f'hk + 2Akk’ fhk)
SL

+1"(2Akhk 4+ 4AK? fhk + 2Af"hk) + O(f?)) dO
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= / . 1((Ak® — k — 2Ak")hk — Ak’ (Wk + hK') — BAch'K'
SL
+ (—2Af @ — f" 4 24k% f — 6AK'%f — 6AkK” f — 10Ak«k’ f + Ax® " hk
— f' +4Af" + 12Akk’ f + 6AKZf")(W'k + hK')
— 2(4AK% f + 2Af WK + O(f?)) d6.

Thus
G} (Ty(h, k), 1)
- / . 1k — 33 + A"k + 2Ak (Wk + hK') + 2Ah'K
SL
— (—Af® = 1"+ Ak*f — 3AK"? f — 3Aki” f — BAKkk’ f' + FA? f")hk

+ (f' 4+ 2Af" + 6Akk’ f + 3Ac> fY(h'k + hk')
+ (BAK2f + 2AfHHK + O(F?)) d6.

At the center of the chart, fof = 0, we get
G§(To(h, k), 1)

= /Sl 13k — 3AK3 + Ak")hk + 2k (W'k + hE') + 2Akh'K') d6
L

1 1 3 /" 101 / 11,/
sk — 5Ak° + Ax"Yhk + 2Ak' (W'k + hk") + 2Ach'k
—/1z<(2 2 ) ( ) )(1+A/<2) do
SL

1+ Ax?
oA (3 — 3AK3 + Ak")hk + 2Ak(Wk + hK') + 2Axh'K’ z
-0 1+ Ax? ’
so that
1 1 3 " 101/ / 111
sk — 5 Ak + Ak hk + 2Ak" (W'k + hk') + 2Ach'k
Poth, k) = 22 ) ( ) : )

1+ Ax?
If we leth = k = f;, this leads to the geodesic equation, valig‘at O:

(3ic = 3AK3 4+ Ak) f2 4 BAK [, f] + 2AK (f))?

fll‘ = 1+AK2

If we substitutez for f; anda; for f;;, this is the same as the previous geodesic equation
derived in 4.2 by variational methods. There is a subtle point here, however: why is it ok
to identify the second derivatives and f;; with each other? To check this leto) +
(ta1(9) + éaz(e))ic/(e) be a 2-jet in our chart. Then if we reparametrize the nearby
curves by substituting — éala’l for 6, letting
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2, 2
c(t,0) = c(@ — Ea1a1> + (la1<9 — Ealal)
1? N\ AN
+ Eag(@ — Eala1)>zc<9 — Eala1>
tz ’ ’ tz ./ 3
=c9) — <E“1‘11)C )+ (ta1(9) + Eag(@))zc (6) modz®,

then(c’, ¢;) = 0 modr?, hence this 2-jet is horizontal ard;;, ic’) = a» mod: as re-
quired.

4.6. Computation of the sectional curvature inB,-,f(Sl, R?) at C. We now go further.
We use the following formula which is valid in a chart:

2Ry (m. h,m, h) = 2G{(Rp(m, hym, h)
= —2d2GA(f)(m, h)(h, m) + d>GA(f)(m, m)(h, h) + d°GA(f)(h, h)(m, m)

—2GA(T (h, m), T'(m, h)) + 2GA(T (m, m), T (h, h)). (1)

The sectional curvature at the two-dimensional subs@ace:, 1) of the tangent space
which is spanned by: and# is then given by

G;‘(R(m, h)ym, h)

kr(P(m,h)) = — .
) = R = G, h?

()

We compute this directly fof = 0. From the expansion up to order 2@;‘(}1, k) in
4.5.1 we get

idZGA(O)(m, D(h, k) = / hk(—<m'l
2! si

L

+ AQ@mI" +m"Dic? + mlc* + 3m'U'c? + (ml' + m' D’ +m"1"))d6.  (3)

Thus we have

— d*G*(0)(m, h)(h, m) + 3d*G™(0)(m, m)(h, h) + 3d*G*(0)(h, h)(m, m)

- —2f hm(—3m'h’
Sl

L

+AQRmh" + m"h)c? + mhi* + %m/h//cz + (mh' +m' bk’ +m"h")) do

+ /1 hh(—%m/z + A(4mm"k? + m?c* + %m’zxz + 2mm’ick’ +m"?)) do
St

+/1 mm(—%h’h’ + A(4hh”,<2 +th4+ %h/h/lcz + 20k ki’ + B'R"Y) d6
S

L

- /l(%(AKZ — D(mh' —m'h)? + Amh" —m"h)?) do.
SL



38 Peter W. Michor, David Mumford

For the second part of the curvature we have

—Go(T'g(h, m), To(m, h)) + Go(I'o(m, m), T'o(h, b))

do
1 1 3 2
= /Si —((z& — 5Ak° + Ac")hm + 2Ak’ (h'm + m'h) + 2Ach'm") T3 Ax?
+ /1 ((%K — %AKS + Aic”)m2 + 4Ak ' mm’ + 2AKm’2)
SL
(ke = LAk + Ak"YR2 4 BAK R + 2AKh'?) a6
22 1+ Ax?
do
= | ((Ak? = A%H 4 2A%" — BAPC P (b — m'h)?) ——
2
51 1+ Ax
Thus we get
Ro(m, h,m, h) = G§ (Ro(m, h)m, )
= /1(%(AK2 — D(mh' — m'h)? + Amh" — m"h)?) do
SL
do
4 / ((Ak? — A2 1 2% — BA%C?) (mh — m'h)?) 5.
51 1+ Ax

Letting W = mh’ — hm' be the Wronskian of: and/ and simplifying, we have

Ro(m, h,m, h)
B / —(Ak2 — 1)2 4 442" — 8A('?
st 2(1+ Ax?)

(4)

>W2d9 + /1 AW do.
S

L

What does this formula say? First of all, if supp Nsuppi) = ¢, the sectional curvature
in the plane spanned by and# is 0. Secondly, we can divide the curwénto two parts:

A1 K2 2
¢l = setof points wherex” < 2(x")? 4 (T) ,

A1 2\ 2
¢, = setof points wherex” > 2(x")? + <—> ,

Note that if A is sufficiently smallc, = ¥ and even ifA is large,c, need not be non-
empty. But if suppm), supgh) C ¢, the sectional curvature is always negative. The
interesting case is when supp), supgh) C c:\“. We may introduce the self-adjoint dif-
ferential operator om.?(S1):

(A2 — 1)2 — 4A%kcic" + 8A%'?
2A(1+ Ax?)

sothatR = —A(SW, W). The eigenvalues df tend to—oo, henceS has a finite number
of positive eigenvalues. If we take, for exampte,= 1 andZ such that’’ is in the

Sf=f"+ f
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span of the positive eigenvalues, the corresponding sectional curvature will be positive.
In general, the condition that the sectional curvature be positive is that the Wronskian
W have a sufficiently large component in the positive eigenspade ©he special case
wherec is the unit circle may clarify the picture: then

(A-1?

Sf=7r +mf

and the eigenfunctions are linear combinations of sines and cosines. It is easy to see that
for any A, a plane spanned by and’ of pure frequencies and! will have positive
curvature if and only ik and! are sufficiently near each other (asymptoticatly- /| <

|A — 1|/ A + a?), hence ‘beat’ at a low frequency.

4.7. The sectional curvature for the inducedH%-metric on B,‘J'(Sl, R?) in a chart.

In the setting of 4.2 we have, fgt € C®(S1, (—¢, €)) andh, k € C®(S}, R),
GY(h, k) = ((r 0 ¥)*GO) s (h. k) = G2, 1)) (Ty(x 0 Y, Ty (7w 0 Y)k)

hk(1— fr)?

JA = fr)?+ 72

At the center of the chart described in 4.4, i.e., foe= 0, the Christoffel symbol 4.5.2
for A = 0 becomes

do. (1)

= Gy Ty - (Tyy - b)) = /Sl
L

To(h, k) = Sxchk. (2)
The curvature 4.6.4 gt = 0 for A = 0 becomes

Ro(m, h,m, h) = Go(Ro(m, h)m, h)
1 1
= ——/ (h'm — hm')? do = —-/ W (m, h)?do ©)
2 S% 2 S%

and the sectional curvatukg(P (m, h)) from 4.6.2 forA = 0 andf = 0 is non-negative.
In the full chart 4.2, starting from the metric 4.6.1, we managed to compute the full
geodesic equation not just fgr= 0 but for generalf, so long asA = 0. The outcome is

iy = e —gke(L— fr)h? + Gh2f" + 2hh' 1)
1— fre (1= fr)2+ )
- kch?f? BeeL = Frahf” = SHEFPST
(1= fr) (A= fre)?+ f2) (L= fro)2+ f5)? '
The geodesic equation is thus
o KR —3A K0 [+ G o + 2 finfo)
1— fre (L= fr)?+ fD
. ke f2fih? Sk = fk) FRRE = 3RS foo )

(A= fr) (A= fre)?+ f2) (L= fre)?+ D2 '

For A > 0 we were unable to get the analogous result.
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5. Examples and numerical results

5.1. The geodesics running through concentric circlesThe simplest possible geodesic
in B; is given by the set of all circles with common center. Cetbe the circle of radius
with center the origin. Consider the path of such cirdgg) given by the parametrization
c(t,0) = r(n)e'?, wherer(t) is a smooth increasing function: [0, 1] — R.o. Then
kc(t,0) = 1/r(¢). If we varyr then the horizontal energy and the variation of this curve
are

1
EX(c) = -f / A+ A/rd)r?rdo dt,

hor (1- A/,,Z) 2
Isls=0EGa(c) = //Sl<l+ ) <rn —2(r+A/r) )d@dl

so thatc is a geodesic if and only if

(1-A/r?) ,
ry, =
20 + A/r) !
Also the geodesic equation 4.1.1 reduces to (1y fof this form.
The solution of (1) can be written in terms of the inverse of a complete elliptic integral

of the second kind. More important is to look at what happens for small andAadye
r — 0, the ODE reduces to

Ty + (1)

72

t
2r 0.
whose general solution igr) = C(r — t)? for some contant€, 1. In other words, at
one end, the path ends in finite time with the circles imploding at their common center.
Note that’ — 0 asr — 0 but not fast enough to prevent the collapse. On the other hand,

asr — oo, the ODE becomes

It —

2

Ty

L _0,
rn+2r

whose general solution igr) = C(r — t9)%/® for some constants§, 7o. Thus at the other
end of the geodesic, the circles expand forever but with decreasing speed.

An interesting point is that this geodesic has conjugate points on it, so that it is an
extremal path but not a local minimum for length over all intervals. This is a concrete
reflection of the collapse of the metric whein= 0. To work this out, take any (9)
such thathZ” fdf = 0 and any functiom(z). ThenX = f(0)a(¢)d/or is a vector field
along the geodesic, i.e. a family of tangent vectorBiat each circleC, ) normal to the
tangent to the geodesic. Its length is easily seen to be

IXIZ,, = (r(r) + —)a(r)z / f©)?ado.
We need to work out its covariant derivative:

0
Vajar () = f@)ai - +Fc,( 9 f(@)ag).
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Using a formula for the Christoffel symbols which we get from 4.2.2 by polarizing, and
noting thatx = 1/r, x; = 0, we get

1—A/r? ) 9

9
Vajar(X) = f@)ars + f(9)art<2(r+—A/r) >

= fO @+ A/ + A/r)l/za)taa—r.

(This formula also follows from the fact that the vectérs+ A/r)~1/23/ar have length
independent of, hence covariant derivative zero.) Jacobi’s equation is therefore

FO)F+ A/ Y2((r + A/r)l/za),,i + R(X, r,i> <r,i) =0, 2)
ar or or

whereR is the curvature tensor. For later purposes, it is convenient to write this equation
usingr as the independent variable along the geodesic rather thad think ofa as a
function ofr. Note that for any functiotr along the geodesié, = b,r, and

A-4/r?) N 2
2r+A/r) )T

Then a somewhat lengthy bit of algebra shows that:

by = brr"}2 + byry = (brr -

r+ ANV + A/Y2a), = (r + A/ YA+ AV ), r? 4 F(r)ar?,

. 1— A/r2\? A
(r)__1_6<r+A/r> +2r3(r+A/r)'

To work out the structure oR in this case, use the fact that the circl€s and
the vector fieldd/or are invariant under rotations. This means that the nfap—
R(9/0r, f0/0r)(9/9r) has the two properties: it commutes with rotations and it is sym-
metric. The only such maps are diagonal in the Fourier basis, i.e. there are real constants

A, such that
cos(n6)d/dr . [cosng)a/ar
R(a/ar, {Sin(n9)8/8r>(8/ar) = { sin(n6)d/or”

To evaluate,,, we take the inner product with c@®) (or sin(r6)) and use our calcula-
tion of Ro(m, h, m, h) in Section 4.6 to show

R(Z cosne) L) (2 ). cosnd) 2 = ro( 2. cosng) 2. 2. cosne) 2
ar’ s )\ ar ) e T o G o o "o

2n 2\2
= /(; ( —2(1+ A/rD) W+ AW )r do

where

where

sin(no) cogno)

5 -

d d
W =1 —cosnd) = —n and W =—W = -n?
ds ds

r
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Simplifying gives

2 2 2\2
LA o Aa
An cos(ne)ar _fo ( St A" Slnz(n9)~|—r3n co§(n0)) do
A=A, A,
“2rram TR
hence

__a-ar? A4
T 20r+ A/r)? r3r+A/r)

Thus forX = cogn6)a,(¢)d/ar, if we combine everything, Jacobi’s equation reads

r+ A/ Y+ A )Yy,

B <_ (1— A/r?)?

2_5
20 A T

S L |
r3(r+A/r) (n 2)>an- (3)

Calling the right hand side thgotential of Jacobi’s equation, we can check that for
eachn, the potential is positive for small, negative for large- and it has one zero,
approximately at/2An for largen. Thus, for small-, these perturbations diverge from

15

-
T
I

0.5 b

-15 I I I I I I
0 10 20 30 40 50 60 70

Fig. 4. The potential in the Jacobi ODE and its solution for an infinitesimal triangular perturbation
of the circles in the geodesic of concentric circles. Note the first conjugate poin7aia.
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the geodesic of circles. For large if we write b, = (r + A/r)Y*a,, then Jacobi’s
equation approaches
n® —0.625
2r2 "
This is solved by, = cx*+¢'x* wherex, )’ are solutions of2— 1 = —(n2—0.625)/2.

Forn = 1, A, A" are real and,, has no zeros; but for > 1, A, A’ have an imaginary part,
sayiy,, and

(bn)rr ~ —

by ~ \/r(c cosy, log(r)) + ¢’ sin(y log(r)))

with infinitely many zeros.

Figure 4 shows the solution far = 3 which approaches 0 as— 0. The first zero
of this solution is about 1@7+/A, making it a conjugate point af = 0. For othen, the
first such conjugate point appears to be bigger, so we conclude: on any segament
ra2 < 10.77./A, the geodesic of circles is locally (and presumably globally) minimizing.

5.2. The geodesic connecting two distant curvedzor any two distant curve€y, Co,
one can construct paths from one to the other by (a) chan@irig some auxiliary curve
D near(Cy, (b) translatingD without modifying it to a point nea€, and (c) changing
the translated curv® to C». If C1 andC2 are very far from each other, the energy of the
translation will dominate the energy required to modify them botPbtd hus we expect
that a geodesic between distant curves will asymptotically utilize a chirwehich is
optimized for least energy translation. To find such cuMeseuristically we may argue
that it should be a curve such that the path given by all its translates in a fixed direction is
a geodesic.

Such geodesics can be found as special cases of the general geodesice \We fix
(1, 0) as the direction of translation and assume that the fgath ¢} is a geodesic. We
need to express this geodesic up to or@€r?) in the chart used in Section 4.4. Let)
be the arc length parametrization Bfandé (s) be the orientation oD at pointc(s), i.e.
¢y = cog0) + isin(@). Then a little calculation shows that if we reparametrize nearby
curves vias = s — (e, cs)t, then the path of translates in directiers just

2
c(S) +te = c(s) + (l(e, icg) + %(e, )k + O(ts))ics
2
=c(s) + (— sin(@(s))r + %COSZ(Q(S)K) + 0(t3)>icx.

Thus, in the notation of 4.2; = —sin(@), hencea;, = — co96)«x and, moreovely;, =
co(9)«. Substituting this in the geodesic formula 4.2.1, we get

(14 Ak?) cof(6)«
_ ksir(0)

o Ak — 13/2) sinf(0) + 4 cog0) sin@)k ks + 2«3 coL(H)).
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Sincex = 6, this becomes, after some manipulation, a singular third order equation for
0(s):

Oyss = 4COUOYO, 0y + (3 — cOP(0))0; (67 — 1/A).

One solution of this equation &(s) = 1/v/4, i.e. a circle of radius/A. In fact, this
seems to be the only simple closed curve which solves this equation. However, if we drop
smoothness, a weak solution of this equation is given by th@iecewiseC? curve made

up of two semi-circles of radiug/A joined by two straight line segments parallel to the
vectore and separated by the distancg2 (as in Figure 5). Note that such ‘cigar’-shaped
curves can be made with line segments of any length.

Fig. 5. Top: the geodesic joining circles of radius 1 at distance 3 apart dvite .1 (using 20

time samples and a 40-gon for the circle). Bottom: the geodesic joining 2 ‘random’ shapes of size
about 1 at distance 5 apart with = .25 (using 20 time samples and a 48-gon approximation for
all curves). In both cases the middle curve which is highlighted.

A numerical approach to minimizégﬁr(c) for variationsc with initial and end curves
circles at a certain distance produced the two such geodesics shown in Figure 5. Note that
the middle curve is indeed close to such a ‘cigar’-shape. However, the width of this shape
is somewhat greater than/21: this is presumably because the end-curves of this path
are not sufficiently far apart. Thus experiments as well as the theory suggest strongly that
geodesics joining any two curves sufficiently far apart compared to their size asymptoti-
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cally approach a constant ‘cigar’-shap@tlintermediate curve made up of 2 semi-circles
of radiusv/A and 2 parallel line segments. We conjecture that this is true.

5.3. The growth of a ‘bump’ on a straight line when A = 0. We have seen above

that the geodesic spray is locally well defined whee- 0. To understand this spray and

see whether it appears to have global solutions, we take that the initial curve contains a
segment with curvature identically zero, i.e. contains a line segment, and that the initial
velocity a is set to a smooth function with compact support contained in this segment.
For simplicity, we take the velocity to be a cubic B-spline, i.e. a piecewise cubic which

is C2 with five nonC? knots approximating a Gaussian blip. The result of integrating is
shown in Figure 6. Note several things: first, where the curvature is zero, the curve moves
with constant velocity if we follow the orthogonal trajectories. Secondly, where the curve
is moving opposite to its curvature (like an expanding circle, the part in the middle), it
is decelerating; but where it is moving with its curvature (like a contracting circle, the
parts at the two ends), it is accelerating. This acceleration at the two ends creates higher
and higher curvature until a corner forms. In the figure, the simulation is stopped just
before the curvature explodes. In the middle, the curve appears to be getting more and
more circular. As the corners form, the curve is approaching the boundary of our space.
Perhaps, with the right entropy condition, one can prolong the solution past the corners
with a suitable piecewis€! curve.

Fig. 6. The forward integration of the geodesic equation wHes 0, starting from a straight line
in the direction given by a smooth bump-like vector field. Note that two corner-like singularities
with curvature going t@o are about to form.

Although this calculation assumds= 0, one will find very similar geodesics when
A is much smaller than /&2, 1/(x, log(a),) andk /s, S0 that the dominant terms in
the geodesic equation are those withoutdann other words, geodesics between large
smooth curves are basically the same as those AvithO.

5.4. Several geodesic triangles iB,. We have examined dilations, translations and the
evolution of blips. We look next at rotations. To get a pure rotational situation, we con-
sider ellipses centered &9, 0) with the same eccentricity 3 and maximum radius 1, but
differently oriented. We take three such ellipses, with orientations differing bya6@

120 degrees. Joining each pair by a geodesic, we get a triandlg in
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We wanted to examine whether along the geodesic joining two such ellipses (a) one
ellipse rotates into the other or (b) the initial ellipse shrinks towards a circle, while the
final ellipse grows, independently of one another. It turns out that, depending on the value
of A, both can happen. Note that we get similar geodesics by either chatigingnaking
the ellipses smaller or larger with held fixed. For eacht, we get an absolute distance
scale with unit ¥+/A and, if the ellipses are bigger than this, (b) dominates, while, if
smaller, (a) dominates.

The results are shown in Figure 7. We have taken the three valuesl, 0.1 and
0.01. For each value, on the top, we show the geodesic joining two of the ellipses as
a sequence of curves in their common ambigAt Below this, we show the triple of
geodesics as a triangle, by displaying the intermediate curves as small shapes along lines
joining the ellipses. This Euclidean triangle is being used purely for display, to indicate
that the computed structure is a triangleBp. Note that forA = 1, the intermediate
shapes are very close to ellipses, whose axes are rotating; whidle=00.01, the bulges
in one ellipse shrink while those of the other grow.
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Fig. 7. Top row: Geodesics in three metrics joining the same two ellipses. The ellipses have ec-
centricity 3, the same center and are &t 6@gree angles to each other. At left= 1; in middle

A = 0.1; on rightA = 0.01. Bottom row: Geodesic triangles B. formed by joining three el-

lipses at angles of 0, 60 and 120 degrees, for the same three valdedefe the intermediate
shapes are just rotated versions of the geodesic in the top row but are laid out on a plane triangle
for visualization purposes.

We can also compute the anglesBp between the sides of this triangle. They turn
out to be 34 whenA = 1, i.e. the angle sum for the triangle is 20&nuch less tham
radians, showing strong negative sectional curvature in the plane containing this triangle.
Butif A = 0.1 or 001, the angle is 77and 69 respectively, giving more tham radians
in the triangle. Thus the sectional curvature is positive for such small valués of
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5.5. Notes on the numerical simulations All simulations in this paper were carried out

in MatLab. The forward integration for the geodesic equationffee 0 was carried out

by the simplest possible finite difference scheme. This seems very stable and reliable.
Solving for the geodesics was done using the MatLab minimization roérinanc

using both its medium and large scale modes. This, however, was quite unstable due to
discretization artifacts. A general path between two curves was represented by a matrix
of points inR?, approximating each curve by a polygon and sampling the path discretely.
The difficulty is that when the polygons have very acute angles, the discretization tends
to be highly inaccurate because of the high curvature localized at one vertex. Initially, in
order to minimize the number of variables in the problem, we tried to use small numbers
of samples and higher order accurate discrete approximations to the derivatives. In all
these attempts, the discrete approximation ‘cheated’ by finding minima to the energy of
the path with polygons with very small angles. The only way we got around this was to use
first order accurate expressions for the derivatives and relatively large numbers of samples
(e.g. 48 points on each curve, 20 samples along the geodesic, herz@ R 48 = 1920
variables in the expression for the energy).

Another problem is that the energy only depends on the path of unparametrized curves
and is independent of the parametrization. To solve this, we added a term to the energy
which is minimized by constant speed parametrizations. This still leaves a possibly wan-
dering basepoint, and we addetimes another term which asked that all points on each
curve should move as normally as possible. In practice, if the initialization was reason-
able, this term was not needed. The final discrete energy that was minimized was this. Let
x;,j be theith sample point on thg‘th curveC;. For each(i, j), estimate the sum of the
squared curvature @f; plus the squared acceleration of the parametrization by

kG, J) ( 1
lL,])= =

2\ lxicaj —xijl*  lxi — xign 4
(The harmonic mean of the segment lengths is used here to further force the parametriza-

tion to be uniform.) Then, for eacli, j), the four trianglest = {a = @, ), b =
(i+1,j), c=(, j+1}around(, j) are considered and the energy is taken to be

2
) lximy; — 2%+ xignjlle

Z(«xa —Xp), (Xa — X)) + €((xa — xp), (X4

lxa — xp|

2
— X

) )(1 + Ak(a)).
i,j,t
We make no guarantees about the accuracy of this simulation! The results, however, seem
to be stable and reasonable.
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